D-R188 872

UNCLASSIFIED

DE;ELOPNEIT OF A DEPENDENCY THEORY TOOLBOV; FOR wmims: U?V

DESIGNCU) AIR FORCE INST OF TECH NRIGHT-PATTERSON AFB
C W STANSBERRY DEC 87 AFIT/GCS/ENG/87D-26

F/G 12/2

4 -,

&
‘v
[N
"
]
¢
¥
]

i‘:

;

1

;

3

#

/

¢

'

e B ’?
=k 3

o 20 %

m" A '
= lie ol
M2 s e |
»

1]

- !

MICROCOPY RESOLUTION TEST CHART .
NATIONAL BURtAU Of STANDARDS 1964 A ::

< v w » \ i
Y AT AT A G R T I L V. .Y VW L¢ LT 2"
f :&“.\ P :&2 P DAY _,_"- \J.. ‘.\,-._,..: \.':‘-r:-\-‘-"y“' -.),\ \.\-_.-‘_\‘G
§~ :
W, -

. -‘Q pA R ,\ - o
- LRSS \ \
'" N7 \"'\"\" > '\::\;

T -.-;- .'-. AR
n‘"ﬂ"’ 't,'""'l‘ 'l' t Hﬁ‘b’ 3 ‘:'%.'i
& .“%"’tﬂ I c' :“:?0: .‘?0. Sovdy

S PETIW LN AN AT

.

AD-A188 872

P
]

N

-

4 DEVELOPMENT OF A DEPENDENCY THEORY

- - L
f
./}

TOOLBOX FOR DATABASE DESIGN
)
1
¢ THESIS
4
: Charles Wayne Stansberry, Jr.

Captain, USAF

i: AFIT/GCS/ENG/87D-26
3‘ N
; LBISMBUTION STATEMENT A
' Approved f
3 S e |
: DEPARTMENT OF THE AIR FORCE
:) "w AIR UNIVERSITY
g AIR FORCE INSTITUTE OF TECHNOLOGY
E Wright-Patterson Air Force Base, Ohio
]
t V4
? 8g 2 4 0686

'
g
1 !

oy A

A i S S P T AT
P06, -’ "' ‘ .T{ ..n '(“d‘r ..‘:Li“ KA.{.LF.)-

Wy
A

- a v s

e Lt TN .
0, AP S A A AV P T

i O 000 ¥ Vol TN e gl R %y ~ A
l‘..i.q Lo ,..i,‘ ,.'0. .Ocﬁ,.ll.o’l.t LD X A 4 v X ¥ L

1.
s

PRI U S S N BN N N S A N BN AN Y FENENE VTENFNUN SR EA A NULN YN UTPTUTUNENENFF IR HATRY IN TN EN TN ¥ A3 M AT EN BV RN XN DN mrn

@ AFIT/GCS/ENG/87D-26

wr
- - - -~ = v - - ' mJ

o

DEVELOPMENT OF A DEPENDENCY THEORY
TOOLBOX FOR DATABASE DESIGN

THESIS

Charles Wayne Stansberry, Jr. D l [c

Captain, USAF ELEC'F £ox)
N\ Q, FEBO9 1988

D | P

AFIT/GCS/ENG/87D-26

Approved for public release; distribution unlimited

o
o
‘l
\.:\q-__.r_\.-\.r_ I, ..-_'.-‘_j

LT T

UM DLOT OO O S N (Y A

AFIT/GCS/ENG/87D-26

DEVELOPMENT OF A DEPENDENCY THEORY

TOOLBOX FOR DATABASE DESIGN

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Information Systems)

Charles Wayne Stansberry, Jr., B.S.

Captain, USAF

December, 1987

Approved for public release; distribution unlimited

| LWy Ty W)
SOOI Lo e XA

JaB Y0 C
LGRS

I R BT b R e AN '.‘___*-.\ *. 'S

Liccesc‘un For —’
NTiS CRA&| E
DTiC TAB

Urarnounced g
JustFicauen

S it
By

D!b!‘;b.j’?ﬁ{.\/

p- e e

b e e

. et e

T e e et ———

A\.‘cﬂ'd')u'i{y Codes

Codfor

[} A'vr i
Dist ‘ TR !
t
Al |
AN S
TN
. \\
i @éq:v \

2] N
\ (7%
® o,é;;

.
L)

R
Ch

4
T @ Preface

o The purpose of this thesis was to design and implement a computer tool which automates
))

D
'Jh algorithms and functions which are used to design and study the logical structures of relational
R

L

" databases. Computer assistance is needed in this area because much of the current dependency
ad
t::: theory used to design and study the logical structures of relational databases exists in the form
D
i'.
:::' of published algorithms and theorems, and hand simulating these algorithms can be a tedious
C'('

' and error prone chore. Additionally, since the process of logical design can be time consuming,
K]
A repetitive, and can be structured into a well defined set of steps, it is well suited for computer
L)
::' assistance.
R
) The computer tool, or “Dependency Theory Toclbox”, was designed for use in an academic
;
:‘ environment as a teaching aid and research tool, rather than for practical application to database
..: A design problems. The toolbox provides many functions which allow the user to generate and study
. ‘ PY) database designs, and is specifically designed to support research in the area of alternative database
L)
RO
::o: designs. Much research is still needed in this area to define methods for automatically generating
I’.
)
:ﬁ alternative designs.

0
':..

) Throughout this thesis effort, I have had a great deal of help from others. This project would
G

e not have been possible without the insights and assistance provided by my thesis advisor, Capt
"
:., Mark A. Roth. His thorough knowledge of the subject area, and his insightful guidance significantly
'y

. influenced the direction of the project, and enabled the thesis project to progress at a steady pace to
t'Q'
:". completion. Additionally, I would like to thank the members of my thesis committee, Dr. Thomas
.“.
.,;I
:.:'. C. Hartrum and Dr. Gary B. Lamont. Their assistance and suggestions were very helpful, and lead
(X

14
‘ to many improvements in the final product. Finally, I would like to thank my wife, Cheryl, for her
) understanding and support throughout the project.
J
LY

" Charles Wayne Stansberry, Jr.
8o
B £l
:\, ii
':‘.
(AN

Cone '1"'.' '. SO TR g -, -g RS o AR L SN '- M \'.‘-\f\f\'-{\'r ' \

Table of Contents

Page

Preface e e e il
Tableof Contents e i
List of Figures e v
Listof Tables e e v
ADbstract e e e vi
I Introduction 1
1.1 Background 1

1.2 Description of Problem, . 3

1.3 Scope e e 4

1.4 Approach e 5

1.5 Sequence of Presentation 5

II. Summary of Current Knowledge 6
2.1 Database Design Methodologies 6

2.2 Dependency Theory and Normalization 9

2.3 Computer Aided Database Design Tools 12

23.1 AFITTheses. 12

2.3.2 Scheme Design System (SDS). 15

233 Ceriand Gottlob. 16

2.3.4 Relational Database Design Aid Version 1 (RED1).. 18

2.3.5 Information Resource Management Aid (IRMA). 18

23.6 DDEW and DATAID. 18

2.3.7 Silvaand Melkanoff. 19

3&’ 2.3.8 Data Designer, Information Builder, Design..
2.3.9 Database Designer's Workbench.

24 Summary

III. Requirements Analysis
3.1 System Objectives

3.2 System User e

3.3 Functional Requirements,, .. .

3.4 Database Design Algorithms Required to Implement Functions

IV. Design Process
41 Required System Modules

42 Algorithm Selection,

4.2.1 Envelope Set, FD/MVD Minimal Cover, Dependency Basis, 4NF

and BCNF Decomposition.
‘% 422 3NF Decomposition, Minimal Cover, Membership Algorithm, At-
- tribute Closure.,
4.2.3 Instance of an Armstrong Relation.
4.2.4 Alternative Logical Designs.
43 DataStructuresand Files
43.1 Data Structures. L
43.2 Files
44 UserlInterface o o
V. Coding and Implementation
5.1 Hardware Configuration
5.2 Language Selection
53 Coding
o iv

s 1 G L R 01 e Gt P a0, TR Y R T e P TR ROR T AT e

20

23

23

23

23

24

29

40

61

65

69

69

69

A R

PR N -

- -

6.2 Test Plan

6.3 Test Procedures

6.4 Test Results

VII. Conclusions and Recommendations for Further Study

7.1 Conclusions

A User’s/Maintenance Manual
A.1 Introduction

A.2 Toolbox Location

A .4 Start-up Procedure
A.5 Overview of User Interface

A.6 Main Functions

A.6.1 Create or Update Database Specification File
A.6.2 Input File Format.
A.6.3 Generate Logical Structures.,

A.6.4 Accomplish Utility Functions.

B. SADT Diagrams
B.1 Introduction
B.2 A-0- Assist Database Designer
B.3 A0 - Assist Database Designer

B.4 Al - INITIALIZE TOOLBOX

A o R o N RN A AN 2 o A A e 0 L

AN AN

@ VI. Acceptance Testing

6.1 ScopeofTesting,

@ A3 Compilingand Linking
‘ b

-
-

Page
71
71
71
72
72
72

72

82
82

83

- e e

o e o b

s vm ey

G

-

IR W

AP o e"e"e |

]

- -
-. L.

-

o
-

D

‘ ar AT A YA
R O N A A M A e OO WA (M V

¥ ‘a g e f£ia'hle £ha AVa R o AN RS CAR "R Al ' a0 ke ‘ab ol Yol tal tal Sal Sinh tal Vel Vol Srhil Sa il TAl, P tal SA AR XAl DAl Sal BN L L R kel |

Page

@ B.5 A2 - Create or Update Database Specification File 106
B.6 A3 - GENERATE LOGICAL STRUCTURES 108

B.7 A4- ACCOMPLISH UTILITY FUNCTIONS 111

B.8 A5-EXITTOOLBOX 114

C. Structure Charts 115
D. Test Procedures and Input/Output Examples 126
D.1 Generate a single 3NF scheme 128

D11 TestCasel.. 128

D12 TestCase2.. 128

D13 TestCase3.. 129

D14 TestCased.. 130

D.2 Generate alternative 3NF schemes 130

D.3 Generate BCNF schemes 130

(lé D31 TestCasel.., 130
D32 TestCase2.. 131

D33 TestCase3.. 132

D34 TestCased.. 134

D4 Generate dNFschemes 134

D41 TestCasel.. 134

D42 TestCase2.. 135

D43 TestCased.. 136

D44 TestCased.. 137

D.5 Find minimal coversforsetof FDs 138

D51 TestCasel.. 138

D52 TestCase2. 139

D53 TestCased.. 139

vi

A A N R T T T e T L T T T N R PR P
¥ V. N o o X XA

VW RN NI N NN VAN N

u‘.,'
o
X: Page
= @ D54 Test Case d.. oo oo i 139
‘ ' D.6 Find minimal covers for set of FDs and MVDs 140
At
'Q;' D61 TestCasel.. 140
b
o D62 Test Case 2.. 140
.;Q.
- D63 TestCase3.. 140
R
N D.7 Membership algorithm L 141
t
4 D.8 Find the envelope set for aset of FDsand MVDs 142
N
" D81 TestCase l.. 142
Ky D82 TestCase 2.. 142
s
'
&\ D83 TestCase3.. 142
:l: D.9 Compute attribute closure 143
o, D.10 Find dependency basis of set of attributes 144
B x’
", D.11 Generate instance of an Armstrong relation 145
) O
ol D111 TestCase 1.. 145
. (.c, DI12 TestCase 2.. 145
)
4 D113 Test Case 3.., 146
!
j_:' D114 Test Case 4. 148
D115 TestCase 5., 149
c;i'
b D116 Test Case 6.. 149
h +
.b D117 Test Case 7.. 150
:'o
~alb Bibliography 151
55
4 \‘
R .
}ﬂ Vita . ., 153
4
!
I
'
':"
i
'n » .f-v
R
o
A‘.
\:.
A
Y Do e o W e N e N VLA A A A "-' . *-"-' SRR I AR -.";\‘_\‘;\‘- <~.‘:s' AR LS CRRSA

.1 & »

T

- -
X »

o e e ™

|

-

K%

LA .

Lw

"~ 5"
-~ %

PN

R I A AN

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

23.

24.

25.

-p

LA 26 Rk fn S0 e ey dal fav das pa< 1a- ot S bACavaTiea 01 abd gvp gig gvi gt - i, val

List of Figures

Page
Example of Armstrong Relation [11,page 20] 19
Instance with Many-to-Many Relationship between Aand B 51
Instance with Many-to-Many Relationship between ABand C 52
Instance with One-to-One Relationship between ABCand DE[26] 53
Instance of Many-to-One Relationship between ABandCD 54
Instance of Many-to-One Relationship between AB and CD,and Aand C. 54
Instance with Combined Relationship between ABC 56
Domain Sizes and Domain Elements 58
Instance of Relation 1 59
Instanceof Relation 3 59
Instance of Relation 4 60
Instance of an Armstrong Relation for Example Input 60
Toolbox Makefile 80
Summary of UNIXviCommands 84
Input File Example 1 85
Input Fille Example 2 86
main structure chart L 116
create_file structure charto o 117
generate_logical_structures structure chart 118
utility.functions structurecharto 119
fd_min_cover_nterface structure chart 0L 120
fd_mvd_min_cover_nterface structure chart 121
membership structure chart o000 122
envelope_set structure chart Lo o 122
attri_closure structure chart Lo Lo 123
viii
R N T N 7 e N T SN TR A N

Al a

W

xS

Figure
26.
27.

28.

dep_basis structure chart

armstrong.rel structure chart

infile_parse structure chart

1x

Page
124

124

~ . » ’ P AP IS AN NN
AKX AN AN AN ™ .A.f_:.th *k.&') - m\;&.u&. \ Tl i L)_i -‘)‘h“.‘!‘ j'Jl'.[,‘_A.'.{L‘J}J:

« - - -
SN

-4

ERhh

-
"y

=
R -

P Ry

&

]

) Yglelbintelt

Table

(o

g

NN

<ol gl tai, b

List of Tables

Page

Computer Tools for Logical Design of Relational Databases K

PR A v i 04 5 “a N'p A ~ Yo 3 “a d'a 4w . 8" ‘a4 e ‘e gty da 4° “a . b'a 42 8" U A At Al Bt A 0 & bl Al Sl B0 A0 Bal A% At

X
4
;
ok
i} @; AFIT/GCS/ENG/87D-26
i
3 Abstract
i Many of the key concepts used for the logical design of relational databases are based on “de-
3
J
* pendency theory”. In depeandency theory, database dependencies are used to specify the constraints
::'. which must hold on a database. Dependency theory studies the properties of these dependencies
O
k7
k and their use in the logical design of relational database systems.
¥
¢
Much of the current dependency theory used to design and study relational databases exists
49
1f in the form of published algorithms and theorems. However, hand simulating these algorithms
)
q
J can be a tedious and error prone chore. Therefore, the purpose of this thesis investigation was
&
to design and implement a computer tool (that is, a “toolbox”) which contains various relational
¥
i
] database design algorithms and functions to help solve the problems created by hand simulating
L1
L]
k the algorithms.
- .
i ‘ [] To establish the basis for additional work in the area of computer assisted database design,
a;: '
:'c and to determine which algorithms and functions should be implemented in the toolbox, this thesis
N
N includes a review of the activities typically done to design a relational database, and surveys the
N
computer tools which are available, or are being developed, to assist database designers with the
oy
P, logical design of relational databases. The survey of computer tools indicated that although many
- researchers have developed computer tools to assist with relational database design, there are still
P
) many algorithms and functions which need to be incorporated into automated design tools.
"l
]) The toolbox implements algorithms to accomplish the following functions: 3NF decompo-
0
7
; sition, 4NF decomposition, BCNF decomposition, envelope set, FD/MVD minimal cover, depen-
r
; dency basis, minimal cover, membership algorithm, attribute closure, Armstrong relation instance,
»
b, and support for generation of alternative logical designs. A simple menu-driven interface was
’
E:u created to access the toolbox functions.
)
a4 ? }
R o, |
. : ":-:f- [
v xi
3 3
0

AT b R o (R R OO G QN RO R LA D TRy G ARG (Y (S CRE U N S LN |

R AR AT, Ale AVa A%4 A'a A Bh ad L)AL LMEARS A a8 Sl A A A A Bl I T‘\-’\'VT

%‘} The thesis provides an overview of the dependency theory concepts and definitions which
| are pertinent to understanding the algorithms and functions. Additionally, the thesis includes a
discussion of how the decomposition algorithms can be used to generate alternative designs by

changing the order of the dependencies in the input set, and by varying the order of the attributes

on the left hand side of the dependencies. The toolbox includes functions to support research in

this area.

The toolbox is intended for use in an academic environment as a teaching aid and rescarch
tool rather than for practical application to database design problems. However, the tool could be
used to design small relational databases which have a limited number of attributes. An evaluation
of the toolbox done during the acceptance testing phase of development indicates that the tool can

effectively serve in all of these capacities.

X

” 4 o m o iy T N T T e T (e A e
A0V 30 R M ORI TR TR TS S SRRV v S A I Vet

DEVELOPMENT OF A DEPENDENCY THEORY

TOOLBOX FOR DATABASE DESIGN

L. Introduction

1.1 Background

Designing a database is very time consuming and consists of a complex set of activities.
The design process includes all the activities associated with analyzing, collecting, and organizing
data into both logical and physical structures which can be implemented on a computer. The
logical database structures are the file structures which show what the data is, and how it is
interrelated [10]). These structures are not dependent on the specific computer on which they will
be implemented. In the relational database model, the logical structures are a set of relations
(tables) which contain all of the data elements (attributes) for the database. The physical database
structures are the structures which must comply with the specifications and considerations of the
specific computer on which they will be implemented. If these structures are not designed properly,
the database may not perform efficiently, or may not consistently maintain the integrity of the data
stored in it. Therefore, in order to design efficient and effective databases, the designer must not
only incorporate all important information into the database, but he must also determine the best

logical and physical structures for the data.

To ensure all important information is incorporated into the database, the designer may
follow one of the many structured design methodologies outlined in the literature. Several of these
methodologies, described in Chapter 11, provide an overview of the tasks involved in database
design. In general, most of the structured methodologies divide the design process into distinct

phases to provide a systematic and thorough approach to the design problem.

AP L LY TP L. 0V e I B Wy W g Vg g Cg o™ au? i Caly
Al Al O O W L e o a m i Can o o A s A

“"J“wwﬂw“"w“rd'\w“w“T

The designer may approach the logical design of a relational database several different ways.
For example, the structures may be designed by developing a conceptual model of the database
in, for example, an Entity-Relationship (ER) diagram, and then directly mapping the ER diagram
into a set of corresponding tables [16]. Another way to design the logical structures is to collect all
necessary database attributes and database constraints (database dependencies), and then hand
simulate design algorithms which generate the logical structures. Alternatively, the designer may
use one of the many computer aided database design tools which have been developed by academic
researchers and private companies. Many of the available tools are reviewed in Chapter II to provide

an overview of the computer tools which are currently available to assist database designers.

Although researchers have investigated implementing computer tools to assist designers in all
phases of database design, a significant effort has been applied in the area of logical design. This
is because the process of logical design is well suited for computer assistance since it can be time

consuming, repetitive, and can be structured into a clearly defined set of steps.

Many of the key concepts in logical design of relational databases are based on “dependency
theory”. In dependency theory, database dependencies are used as a type of language to specify
the constraints which must hold on a database [12]. “Dependency theory studies the properties
of this language and its use in database management systems” [12, page 15]. The majority of the
computer tools which support the logical design process implement algorithms and functions which
design logical structures by manipulating data dependencies and organizing the data elements into
forms with certain desirable properties. These database forms are known as “normal” forms, and
they are desirable because, among other things, they ensure minimal redundancy of data, ensure
that no information is lost when the data is organized into separate relations, and they help avoid
anomalies which can sometimes occur when updating unnormalized databases. Dependency theory

and normalization are discussed in more detail in Chapter II.

R ST N NN L L et e

N TR T I T PRl PPN NN A Wy e LI R N
O A I S DI M P N N I A P A PN P Pl 0, P o P P Py

+ i Y0 3. ab ot £ t Vo s gig Ala Jlg A7 3, 7 TATNTXYATNY N YWJ"JVW’T
1
-':
4%
"
)
Bel ‘@ Although many researchers have developed computer tools to assist database designers with
f‘.
LS
logical design of relational databases, there are still many algorithms and functions which need
'
) . .
K to be incorporated into automated design tools. Since computer aided design tools can greatly
:: enhance the efficiency and effectiveness of accomplishing database design tasks, the existence of
KA
these tools can support the development of better database designs, and can also assist students
M
;: who are studying the process of database design.

1.2 Description of Problem

B
:E: Much of the current dependency theory used to design and study relational databases exists in
"
;::. the form of published algorithms and theorems. Hand simulating these algorithms can be a tedious
I
and error prone chore. Therefore, a toolbox of algorithms and functions to manipulate database
W
3‘:: dependencies would be beneficial in exploring the behavior of these algorithms, in assisting with
%
) the development of new algorithms, and in the active use of database design.
4
; _‘ Gij Thus, many database design algorithms should be implemented in a computer aided design
KN
:n,‘ tool (that is, a “toolbox”) so that database designers and students studying database design have
5
)
g. access to automated tools to assist their efforts. The toolbox should include algorithms which
L 4
. generate logical structures in specific normal forms, and also, algorithms which show alternative
G
D!
:_ designs. A toolbox which automates the execution of database design algorithms such as these
ﬂ: would greatly enhance the ability of designers and students to use the algorithms effectively.
4
!
o Thus, the purpose of this thesis project was to implement a toolbox of algorithms and func-
'
¢
j_, tions to assist database designers and students studying database design. This computer tool will
N
L ‘ .
;:, help to solve the problems created by hand simulating the design algorithms.
‘.;.
W
)
'
P
)
A
R N
A
v‘:: 3
v. -
3

e L G g A G N R, 58 T W, A S R O G A YA A VA WA

1.3 Scope

The three main models used to define the data stored in a database include the hierarchical
model, the network model, and the relational model [16]. This thesis effort was limited to developing
a computer aided design tool which supports the relational model. The relational model was chosen
because it has widespread acceptance and is therefore the subject of much of the current database

research.

Additionally, although automated tools can be useful for all phases of database design, this
investigation only involved implementation of a tool to assist with the logical design phase. The log-
ical design phase was chosen because organizing data into tables which have the specific properties
required to optimize database manipulation and data integrity requires that the database designer
use algorithms and functions which can be very tedious to simulate manually. Additionally, much
of the database course work done at the Air Force Institute of Technology focuses on the logical
design of databases, and therefore, an automated tool which supports this phase of database design

could be useful to the students at the Institute.

The use of this tool will be mainly pedagogical. That is, it is intended for use in an academic
environment as a teaching aid and research tool rather than for practical application to database
design problems. However, the tool could be used to design small relational databases which have

a limited number of attributes.

This thesis effort did not involve proving the correctness of database design algorithms and
functions. The algorithms and functions implemented in the computer tool will be extracted from
published material, and the users of the tool will be referred to the original publication for the

proof of correctness if it exists.

L IEENCE TS ERN TURTO ‘00 A 40 a8 8 0a 8's S a f 0 80 d'a 8% AVe B a ATa B'a QUy Ata Sy RV Big Aly ARe A¥. B7a Aty Aba Bhe A8. Ate Rig Rty fio g'y A
X
Y
.?n‘
o
i)
c,:'
‘:g .
e AN 1.4 Approach
::i ";:-;'? ‘ pP
.y The “Dependency Theory Toolbox for Database Design” was developed using a standard
(
¥
1)
'l phased approach to software development. The development phases included: Requirements Anal-
:"', ysis, Design, Coding and Implementation, and Acceptance Testing. Before designing the system,
sy an extensive literature review was accomplished to determine what work had already been done in
)
0
::' the area of computer aided database design. The literature review was then used as an input to
)
2
:"" the first phase of system development to help establish the requirements for the toolbox.
v In the first phase, the requirements for the toolbox were determined. This included defining
b
"
:: " the system objectives, the system user, the functional requirements of the system, and the database
>
§~ design algorithms required to implement the functions. Then, in the second phase, design issues
o were examined, system modules were planned, data and file structures were chosen, and the user
o
b
;'. interface was designed. Next, in the third phase, the system was coded and implemented. And
~
!
:: . finally, in the last phase, the system was tested to ensure it operated properly.
", -
::,‘ 1.5 Sequence of Presentation
Ly
1".
o The remainder of this thesis is organized to document the activities accomplished in each
:;:. phase of the development process. Chapter II contains a summary of the current knowledge related
‘ \ to computer aided database design tools, and reviews the pertinent concepts of dependency theory
CY
ot and normalization. Chapter III outlines the system requirements established during the require-
_ y g
X ' ments analysis phase. Then, Chapter IV documents the design phase, Chapter V documents the
)
L]
15 coding and implementation phase, and Chapter VI documents the acceptance testing phase. The
[} "
W
;':: last chapter, Chapter VII, presents conclusions and recommendations for further study. Additional
system documentation is provided in the appendices.
L)
"
¥
‘o
o
o,
(]
IS
o
Y 5
)y
’
&
o
a8
A

() . . NS . N R R T T TR T AT T Tt
"':‘l-‘.l- I.'J,_ 1 rr .'.\' ""\'..‘ . f\(_ ‘.h -(LA . o) 1" LR AR CR L W

L - i

e e e e

-

A O SN O O N AL

II. Summary of Current Knowledge

The process of database design can be divided into several phases. Typically, these phases
include the 'requirements collection and analysis phase, the conceptual design phase, the logical
design phase, and the physical design phase {2]. Researchers have investigated implementing Com-
puter Aided Design tools to assist database designers in all of these phases. In order to establish the
basis for additional work in the area of cornputer assisted database design, this chapter summarizes
the activities typically done to design a database, and then surveys the computer tools which are

available, or being developed, to assist database designers with logical design of relational databases.

In the first section, this chapter reviews some of the structured design methodologies which
database designers may use to ensure all important information is included in the database. Then,
the next section provides an overview of “dependency theory” and “normalization™ which are the
basis for many of the key concepts in logical design of relational databases. The third section then
surveys the computer tools developed for logical database design, and the final section presents a

summary of the information.

2.1 Database Design Methodologies

To help ensure all important information is incorporated into the database, the designer can
follow one of the many structured database design methodologies which have been outlined in
the current literature {2,6,9,24]. These structured methodologies provide a systematic approach
to database design, and usually divide the design process into several distinct phases. One such
methodology is described by Batini, et al. [2]. The phases defined for this approach include the
Requirements Collection and Analysis phase, the Conceptual Design phase, the Logical Design
phase, and the Physical Design phase. The authors outline the activities accomplished in each

phase as follows.

w'-/'-"-l'-\n'f-.

- e
TV TR FLR OIS !_L\‘l pa

[ol G ¥ St R0 S N |

eI ErR O «

P,

N

The Requirements Collection and Analysis phase consists of the activities required to collect
the requirements for data, operations, and events from the user. The user supplies the requirements
in plain language sentences. Then, the database designers translate the requirements in‘> a more

precise language using different sentence types to describe data, operations, and events.

The next phase, the Conceptual Design phase, includes the activities required to formalize
the description of the data, the operations, and the events which were collected during the first
phase. During the Conceptual Design phase, the data is organized by using Entity Relationship
(ER) diagrams, which are graphical representations of the data elements (entities), the character-
istics (attributes) of the entities, and the relationships among those entities. This process is an
incremental process of choosing all of the entities required for a specific operation, and then defining
the ER diagram for just that specific portion of the data elements. The resulting diagram is called
an operation schema. The data schema is defined as all of the data which are required to support
the operations on the database. So, as each operation schemna is defined, it is integrated into the
overall data schema. Thus, a data schema is developed for each user's view (perspective), with
the data they need for their particular operations, and then the separate views are merged into a

global view which contains all of the data elements in the entire organization’s database.

The next phase of design, the Logical Design phase, is defined as the activities which are
required to translate the conceptual model created in the previous phase into a logical model. The
logical model for a relational database consists of a set of relations (tables) which contain al} of the

data elements for the database. The tables are set up so that they contain related data.

The Physical Design phase consists of determining how the data will actually be stored in the
memory of the target computer. For relational databases, this phase consists mainly of determining
what type of indexing system should be used to access the relations. The type of indexing should

be chosen to minimize the costs of operations on the databasc [2]. Thus, the overall meth. . 1nlngy

. ._... AR A T

3

- - - - - - - - - -] '.. » Y e -N - & -. 'l
.-"- .'-‘-1\-,' . _-\."- .'-\-\- . ,.-'\ \- ~ \ ._ \ _ \ .- (R

alarogav dav tad £a5 Sav Gat fak So Sob (o gst o0 Sob Ba Sab Tt Ral Sl A A SN

described by Batini, et al., considers all of the major activities involved in designing a database,

and provides a well defined structured approach to the design process.

Other authors have defined similar database design methodologies. For example, Herman
outlined a design methodology which also consists of four phases but with slightly different names
and activities within the phases [14]. Herman defines the four phases of database design as the
Conceptual Design phase, the Detailed Conceptual Design phase, the Logical Design phase, and
the Physical Design phase. These four phases correspond to the standard phases of the software
project life cycle: Feasibility, Function Analysis, Design, and Implementation. Thus, this design
methodology has an appeal in environments where structured programming and design techniques
are already being used [14). Like the design method defined by Batini, et al., the method defined
by Herman also considers all of the major activities involved in designing a database, and provides

a well defined structured approach to the database design process.

. A third database design methodology, again similar to those already discussed, is outlined
in the article, “The Database Design and Evaluation Workbench (DDEW) at CCA” by Reiner
and others [24]. Thus, we can see that several structured approaches to database design have
been defined in the literature, and that most of the approaches clearly define steps or phases to
foliow in the design process. Also, since the process of database design is very complex and time
consuming, these structured design approaches should help to ensure that all important information

is considered and ultimately incorporated into the database design [15].

Since many of the tasks involved in designing a database are time consuming and repetitive,
they are good candidates for Computer Aided Design (CAD) tools [19]. Additionally, as Bjorner-
stedt and Hulten said, “Systems for managing large scale databases under the relational model

have become commercially available and therefore the value of design tools for the relational model

is obvious” [6, page 215]. Thus, to enhance the database design process, many researchers have

developed computer tools to aid database designers.

S AT AR AT ST N AR TP b N S S

Although researchers have investigated implementing CAD tools to assist designers in all
phases of database design, a significant effort has been applied in the area of logical design. This is
because the process of logical design is well suited for computer assistance because the process can
be time consuming, repetitive, and it can be structured into a clearly defined set of steps. Many
of the key concepis in logical design of relational databases are based on “dependency theory” and

“normalization”. The next section provides an overview of these two areas.

2.2 Dependency Theory and Normalization

The activities required for designing the logical structures of a relational database have Leen
extensively documented in the area of relational database theory known as dependency theory. As
stated in Chapter I, in dependency theory, database dependencies are used as a type of language
to specify the constraints which must hold on a database [12). “Dependency theory studies the

properties of this language and its use in database management systems” [12, page 19).

There are many types of data dependencies, including functional dependencies, multivalued
dependencies, join dependencies, inclusion dependencies, etc. See [12] for a complete survey. Al-
though all of these types of data dependencies are useful for completely defining the semantics of
a database (by semantics, we mean all the constraints which must hold for the entire database),
this paper focuses on functional and multivalued dependencies because both types have been used
effectively to organize the database elements (attributes) into relations in certain “normal” forms.
The process of organizing the attributes of a database into relations in a certain normal form is
called “normalization”. In general, the objective of normalization is to organize, or decompose,
the attributes into relations which minimize repetition of data, and which allow easy retrieval of
required information [16]. Additionally, normal forms help avoid certain types of anomalies which

occur in database manipulation [8].

. e e e e e e Wt
N LW e e e e et e T L e et B I A S A A PN
:f:'_f NI I ICHIN, ._1‘.'.;{“-:;{;{;.(;(4.{.:‘&'@‘1&& _\.MLL':.\.'.) " e A T T A

WWWW".{'\-'VWWI‘JTK’KWI‘.(“W"'W

Mud”s

.
>

- o oo
L LLLT

o

20

2

a'a“ b

WM

N

Many normal forms have been defined in the literature, including:

1. First Normal Form (1NF)

2. Second Normal Form (2NF)

3. Third Normal Form (3NF)

4. Boyce-Codd Normal Form (BCNF)

5. Fourth Normal Form (4NF)

A good description of all of the above normal forms can be found in [13]. A major goal of the
normalization process is to generate relations which are “lossless” and “dependency preserving”
[16]. “Lossless” means that relations must also be available in the decomposed set of relations
[8), or it must be possible to retrieve the information by joining relations together. “Dependency
preserving” means that the attributes have been grouped into relations so that it is not necessary to
Join relations to verify whether a certain integrity constraint (i.e., a dependency) has been violated.
That is, all the attributes of each dependency must be embedded in single relations, or implied by
dependencies which are embedded in the relations, so it is not necessary to compute joins to verify

whether the integrity of the database has been violated [16].

Normalization can be accomplished using functional dependencies (FDs) and multivalued
dependencies (MVDs) either individually or together. Functional dependencies are a type of con-
straint of the form “X — Y™, read as “X determines Y”, where X and Y are attributes in the
database. Informally, this means that if a relation in the database contains columns for both X and
Y, the value of Y is determined by X. That is, if two tuples in the relation agree on X, they must
also agree on Y [12]. For example, the FD SSN — Student should hold in a relation with columns
SSN, Student, and Courses since for any two tuples in the relation, if the SSN attributes match,

the Student attributes should also match.

10

X SR AT RELA SRS AR RSSO RS R SR
" . Al

3% .

(o

-~

.

4

'’’’

Although functional dependencies are very useful for specifying which data depends on other

data, they are limited in that they can express either one-to-one relationships or many-to-one
relationships, but not one-to-many or many-to-many relationships. In real world databases, a
certain attribute may actually determine a set of values of an attribute as opposed to a single
value. Therefore, multivalued dependencies are needed to specify when an attribute determines a
set of values [12]. Multivalued dependencies are copstraints of the form “X —— Y7, read as “X
multidetermines Y”. As an example, the multivalued dependency “Parent —— Child” should hold
in a relation with columns Parent, Child, and Hobbies (where “Hobbies” are the hobbies of the

Parent) since a specific set of children depends on the parent, and is independent of the parent’s

hobbies.

Another important characteristic of multivalued dependencies is that they allow the designer
to express when two things are not directly related [4). For example, in a relation witli columns
Parent, Child, and Hobbies, as above, the multivalued dependencies “Parent —— Child” and “Par-
ent —— Hobbies” express the facts that a set of children depends on a specific parent, independent
of the parent’s hobbies, and that a set of hobbies depends on a specific parent, independent of the
parent’s set of children. Thus, these two multivalued dependencies, written “Parent —— Child |
Hobbies” for short, not only express the relationships between parents and children and parents and

hobbies, but they also express the fact that there is no relationship between children and hobbies

except the indirect relationship through the parent [4].

The concepts of FDs and MVDs can be directly applied to the process of normahzation.
In general, FDs are used to “synthesize” 3NF or BCNF relations by using the FDs to determine
which closely related attributes should be grouped together [4]. On the other hand, MV Ds are
used to “decompose” a set of attributes into 4NF by splitting the unrelated attributes into separate
relations [4]. For example, using MVDs, the above relation scheme (Parent, Child, Hobbies) would

be decomposed into the two smaller schemes (Parent, Child) and (Parent,Hobbies) to separate the

11

o,

o NS o T e N i T T A T T G T e et e e NN R e e L N Y
A 5 X o a A)

R R e s 1"-{‘1’-

~v('-l“

(o

unrelated attributes “Child” and “Hobbies”. Additionally, since databases often require both FDs

and MVDs to express constraints, several researchers have proposed normalization techniques using

FDs and MVDs together {2,31,32].

To assist designers with logical design of relational databases, the concepts of dependency the-
ory and normalization have been implemented in several CAD tools. The next section reviews the
work that has been done to automate the logical design process. Additional concepts of dependency

theory are explained in the section as necessary.

2.8 Computer Aided Database Design Tools

As stated previously, researchers have investigated implementing CAD tools for all phases of
database design. Reference [7) contains a comprehensive list of database design tools. The list does
not include a detailed review of the capabilities of each tool, therefore, further literature review was
required to determine the methods implemented in each tool to design the logical structures of a
database. The literature review revealed that several tools have been implemented to support entire
database design methodologies [2,6,24]. Additionally, several tools have been developed which focus
on the logical design process. Table I contains a representative sample of the recent work which

has been accomplished to automate the logical design phase of database design.

The design tools listed in Table I are discussed in more detail as follows:

2.8.1 AFIT Theses. The first tool listed in Table I designs 3NF relation schemes by finding
a minimal cover of a set of FDs, and then generating a relation corresponding to each FD in the

minimal cover. The resulting relations are automatically in 3NF [29].

A minimal cover is a reduced set of FDs which is equivalent to the original set, but with no

redundancies. By equivalent we mean that both sets have the same closure, where the closure of a

set F of FDs is the set of all FDs logically implied by F. The closure of F is denoted by F*.

T I A K
Sl b A A S 4 i

"J\."ﬁ'}"""” ;

(e

8.

9

Design Algorithms
Tool Implemented

. AFIT Theses (15,19,27) - Minimal cover of FDs (results in 3NF relations)

. Scheme Design System - calculate dependency basis
(SDS) [17] - find envelope set of MVDs
- find minimal cover of MVDs
- find keys and M~
- 4NF decomposition
- BCNF decomposition
- Nested Normal Form (NNF) decomposition
. Ceri and Gottlob [8] - closure of a set of attributes
- find minimal cover
- determine keys
- test for lossless joins
- 3NF design
- BCNF design
. Relational Database - test to determine normal form of database
Design Aid Version 1 - 3NF design
(RED1) [6] - determine if a particular data dependency logically
follows from previously defined dependencies
. Information Resource - develop data structure
Management Aid (IRMA) charts which are in 3NF
[10]
. Database Design and - BCNF normalization

Evaluation Workbench
(DDEW) [24]

. DATAID [2] - flow graph approach for logical design

Silva and Melkanoff [26] - Armstrong database instance

Data Designer [30] - 3NF design

10. Information Builder [30] - 3NF design

11. Design [30] - Normalization

- finds matching keys and combines tables
- identifies foreign keys

12. Database Designer’s - 3NF design

7‘1 R - T 50 3 By
G R l.g s 8% 4% 4%

Workbench [9]

Table 1. Computer Tools for Logical Design of Relational Databases

13

.~ ™y ™ PP P R LR T R e T v I G s I L N RN . -"-—’_- R
s T, N L G R A G G G Rt S S L S A REN LA W VAR IR A

Wl S e et

PR RN |
[ERE

<

;t
4
“
R % A set F of dependencies is minimal (referred to as canonical in {16}) if:
]
, 1. The right hand side (RHS) of each FD in F is a single attribute.
4
: 2. NoFD X — A in F can be eliminated and still maintain an equivalent set of FDs. That
t
: is, if an FD can be removed from F and the closure of F — { X — A} is equal to the closure of F,
0 then the unnecessary FD must be removed from F.
' 3. The left hand side (LHS) of each FD in F has been reduced. That is, if an attribute can
)
be removed from the LHS of an FD without changing F*, then the “extraneous” attribute must
be removed.
"
4
? The concept of minimal cover is central to normalization. As Beeri and Kifer explain “There
& is a wide consensus in the database community that, for the logical design, one only needs depen-
z dencies from some minimal cover” [4, page 138]. They also assert that “It is widely acknowledged
]
t that the design process begins by finding a mirimal cover of a dependency set” (4, page 142]. One
i ‘-‘; of the main reasons it is important to find a minimal cover, is that since the minimal cover has
’:- the same closure as the original set of dependencies specified by the designer, the minimal cover
~
N contains all of the same “potential” information as the original set; however, since the redundancies
t
* have been removed, the relations generated from a minimal cover should contain less redundancy
] [8].
An important characteristic of minimal covers is that they are not unique for a given set of
1
1
dependencies. That is, the minimal cover will vary depending on the order in which dependencies
2 are removed from the original set of dependencies. Thus, alternative designs can be developed by
) changing the order before generating the minimal cover.
L]
)
i The process implemented in the AFIT theses to find a minimal cover consists of the following
‘ steps [15). First, the RHS of each FD is reduced to a single attribute. Then, if the LHS of two FDs
<
Y in the new set of FDs determine the same single attribute, and one of the LHSs is a subset of the
4
other, then the FD with the larger set of attributes in the LHS is removed. The third step in the
A ':‘}-J
N) 14
4! »
I\ U
L
)
o,

. P Nt - e ? T " ™ a%a A" A e " T Tt e e O T N P
.' '.Jl" ‘. "$.'.--"'\.‘-\\..¥'\- ~‘.‘~ NTITAT A AT AN ‘\‘ WS I .\.'\\N\\ AL

il el e

[-
WG,

process removes redundant explicit transitive dependencies. That is, if a transitive dependency can

be inferred from two dependencies in the set, then the transitive dependency can be removed from
the set if it exists explicitly. For example, if A — B and B — C are two dependencies in the set of
FDs, then the transitive dependency A — C is implied by these two dependencies. If A — C exists
explicitly in the set of FDs, it is removed. Jankus claims that the set of FDs which results from
these three steps is a minimal cover of the original set, and is in 3NF if each FD is treated as a
separate relation [15). In addition to the steps required to produce the minimal cover, the process
has two more steps to reduce redundancy. The fourth step is to combine FDs with the same LHS
into a single FD with a RHS which is the union of all the RHSs of the combined FDs. Then, if two
FDs contain the same attributes, the fifth step is to eliminate one of the FDs. For example, if the
set contains A — B and B — A, then one of the two FDs can be eliminated since both will result
in a relation generated with the two attributes A and B. Once the minimal cover is complete, the

system then generates a relation for each FD in the cover.

2.8.2 Scheme Design System (SDS). The Scheme Design System implements the following

design algorithms to assist the database designer.

2.8.2.1 Dependency Basis. Given a set M of multivalued dependencies, the tool can
calculate the dependency basis of a set of attributes X in a universal set U of attributes with
respect to M. The dependency basis of an attribute is a set of sets of attributes which can be used
to find the set of MVDs of the form X —— Y logically implied by M [17]. This algorithm is

required to support other algorithms in the SDS such as finding a minimal cover of a set of MVDs.

2.83.2.2 Envelope Set. An envelope set is the set of MVDs which is logically implied
by a set D of FDs and MVDs. The generated envelope set of MVDs can be used to decompose
relations in the context of both FDs and MVDs [33]. The algorithm implemented in the SDS

executes in a time complexity which is polynomial in the size of D [17].

15

LIS L PR WA 2N LIS] SIS TS O TR L T S R U L R S
W .l.i‘-l W W RO GRS YN, A la s T, P WY

. . s
R VPR

e L "-'Q’_’«‘
e Py,

e
L)
L)
Iy
0
K)
1}
)
i
’
D)
9 ‘.';:.‘
i Y ‘({.-'_
. RS i)
O
()
'.
[\
(
v

y G LT U T ST N W
valy BN ,.l‘ y A -

2.3.2.8 Minimal Cover of MVDs. As described above for FDs, the minimal cover of

a set of MVDs is a reduced set of MVDs which is equivalent to the original set, but with no
redundancies [17). An MVD X —— W in a set M of MVDs is reduced if [17]:

e X is nontrivial. That is, XW does not equal U, or W is not a subset of X.

o The LHS cannot be reduced. That is, there is no subset of X, X’, such that
X' ——— W is in the closure of M.

e The RHS cannot be reduced. That is, there is no subset of W, W', such that
X —— W’ isin the closure of M.

e The MVD is nontransferable. That is, there is no subset of X, X’, such that
X' — W(X — X') in the closure of M.

If every MVD in a set M of MVDs is reduced, and if no proper subset of M is a cover of M,

then M is a minimal cover [17)].

2.9.2.4 Keys and M~. For the SDS, M~ is defined as a set of reduced MVDs of M+,
and keys are defined as the set LHS(M ~) [17]. The SDS generates M~ and the set of keys so the

keys can be used to decompose a set of attributes into 4NF relation schemes.

2.8.25 JANF and BCNF decomposition. The SDS uses a single algorithm to design
both 4NF and BCNF relation schemes. If the set of dependencies used for the decomposition
process contains both FDs and MVDs, or MVDs only, then the algorithm produces a 4NF decom-
position. However, if the set of dependencies contains FDs only then the algorithm produces a

BCNF decomposition {17].

2.3.2.6 Nested Normal Form (NNF) decomposition. The NNF decomposition algo-
rithm produces nested relational database schemes, a new research area extending current relational

database technology (25].

2.3.3 Ceri and Gottlob. In their normalization tool, Ceri and Gottlob implement several
database design algorithms in the Prolog programming language. Unlike the SDS, Ceri and Gottlob

do not incorporate the use of multivalued dependencies in their tool, although they indicate that

16

BN L A) 'y f'f"' T T T T n e S T e e et e S -~

A,

o S D0 Y G

r
.

ime

the tool has an “open” design so that new capabilities can be easily added [8]. In order to limit
the complexity of their system, they only allow specification of functional dependencies, and thus
cannot design normal forms such as 4NF which depend on specification of multivalued dependencies

(8]. The major design algorithms they implemented include the following.

They implement an algorithm to find a minimal cover which differs from the one implemented
in the AFIT Theses discussed above. Ceri and Gottlob’s implementation requires computing the
closure of attributes quite often to determine the minimal cover, whereas attribute closure is not
computed for the method used in the AFIT theses. The closure of an attribute X with respect to
a set of FDs is the set of all attributes functionally determined by X [16]. It is interesting to note
that the attribute closure algorithm is used by all of the algorithms in Ceri’s and Gottlob’s tool
[8]. Although algorithms exist to compute attribute closure efficiently (i.e. in a time complexity of
O(N) where N is the length of the input [12]), an algorithm which avoids calculating this closure for
each LHS of all FDs, and for all subsets of each LHS of all FDs durirg the left reduction procedure
could possibly execute faster for a given set of FDs. Thus, the algorithm implemented in the AFIT
theses would appear to be the faster of the two approaches. However, a closer examination of the
algorithm implemented in the AFIT theses is required to determine if it accurately generates a

minimal cover in all cases. This analysis is shown in Section 4.2.2.

Additionally, as indicated in Table I, Ceri and Gottlob implemented an algorithm to find all
the keys of a relation scheme, with keys defined as the attributes of the relation scheme which can
uniquely identify each tuple [8]. Identification of keys is important for both designing the relation

schemes and also for retrieving data from the database.

The algorithm which tests for lossless joins ensures that a particular decomposition does not
result in the loss of any information which was available in the original relations. “The decom-
position of one relation R into several relations R; is called lossless (i.e., possessing the lossless

join property) if it is possible to reconstruct R by equijoining the relation R; over the common

17

---------- .y . T T T Voo
e e S A R e e N i G N G NN N ey

Lotak a8 Mot ol

R OARCE NPT

ladlad |

LS ” 0a” dha eyt a1 afa AR are BiaTaoa S 1bd avA 4y g'ig’ Uad Wal iat ab iat cal ol gty gbg gin e BY > v AR A hd LR AR S AL s |

U
M)
At
W
o
K
“.
¢
e %} attributes...” [8, page 534]. Note that in this context, “equijoining” is equivalent to “natural join-
$
W ing”. Ceri and Gottlob indicate that the algorithm they implemented to decompoee relations into
LY
'3 3NF does not guarantee losslessness so the losslessness test can fail for some 3NF decompositions
;‘ [8]. However, other algorithms exist which guarantee the lossless join property [16] and thus this
Pi)
. test would not be necessary if it is already incorporated into the decomposition algorithm.
7
\
Finally, Ceri’s and Gottlob’s tool contains algorithms to decompose relations into 3NF and
L3
: BCNF. The 3NF algorithm implemented was originally defined in (5], and the BCNF algorithm is
% defined in {28].
M
v
Wy
: 2.3.4 Relational Database Design Aid Version 1 (REDI). REDI1 is a tool developed at
* the University of Stockholm for logical design of relational databases. With the tool, a database
¥
. designer can specify functional and multivalued dependencies, can test whether a database scheme
is in 2NF, 3NF, BCNF, or 4NF, can determine if a certain data dependency logically follows from
! "“ a set of dependencies, or can generate 3NF relation schemes [6]. Like Ceri’s and Gottlob’s tool, the
. 3NF generation function in REDI1 is based on the algorithm described by Bernstein in 5.
'L 2.3.5 Information Resource Management Aid (IRMA). The IRMA is a tool to assist with
. logical database design which helps the designer organize data into data structure charts which
: are in 3NF. The data structure charts are in 3NF (but not 1NF since repeating fields are allowed)
; because each branch of the chart under a key is a 3NF relation since the concept of functional
i dependencies is embedded into the logic of data structure chart formation [10]. IRMA does not
)
o utilize dependency theory algorithms to normalize the logical structures since the relations are by
L)
! default in 3NF.
"
.', 236 DDEW and DATAID. The Database Design and Evaluation Workbench (DDEW)
Yy
‘) [24] and the DATAID project [2] are both development efforts to support entire database design
s
el
methodologies. The systems contain automated tools to assist with all phases of database design.
<"
::“'.‘

5

18

Pl af Be o o opN
a

LAl At A A AR Aol Sulk Bal Bak Bl Bl Aol B db ek e 'T

EMP DEPT MGR
Hilbert Math Gauss
Pythagoras Math Gauss
: Turing Computer Science | von Neumann
i Einstein Physics Gauss

Figure 1. Example of Armstrong Relation [11, page 20]

For the logical design phase, DDEW supports normalization into BCNF. The DATAID project
provides a different approach for logical design. The logical design portion of DATAID translates
the conceptual schema, which is based on an extension of the Entity Relationship model, into
logical structures by first converting the conceptual schema into a flow graph. In the graph, nodes
represent entities and arcs represent relationships between entities. The graph construction process
can produce more than one design, so the design which minimizes the number of logical accesses
of the operations and the amount of data transferred during 1/O operations is selected. Then, the

logical structures are generated from the flow graph [1].

2.3.7 Silva and Melkanoff. Reference [26] indicates that Silva and Melkanoff implemented
a tool to assist database designers with determining the FDs and MVDs which should hold for
a certain set of attributes. To do this, the tool generates an instance of an Armstrong relation
which is a relation that obeys precisely every specified dependency but no others [11]. Once an
instance of the relation is generated, it is assumed that the user can recognize whether the correct
dependencies have been specified or if some are missing or incorrect [26). The following example

from (11] illustrates this very clearly:

Let D be the set of dependencies {EMP — DEPT, DEPT — MGR). Then, the closure
of D consists of the FDs in D and others such as EM P — MGR. The relation in Figure 1 is an

Armstrong relation for D because it obeys every FD in the closure of D but no others.

Fagin explains that the designer could examine this relation and determine that “Here is a

manager, namely Gauss, who manages two departments. Therefore, the dependencies I inputted

0.-aba-hi e Sing ot A aad ARahBAANADG'e 8" 2 A% AA A\ Ha Ala Rin -l |

must not have implied that no manager can manage two different departments. Since I want this
to be a constraint for my database, I'd better input the FD MGR — DEPT” (11, page 2]. Thus,
the generation of an instance of an Armstrong relation for a given set of dependencies could be

very useful for determining which dependencies should be specified for a given set of attributes.

Recent information indicates this tool no longer exists [20].

2.3.8 Data Designer, Information Builder, Design. These three design aids are commer-
cially available tools which have been developed to support the normalization process [30]. In
addition to normalization, Design also provides algorithms to find relations with matching keys
and combine those relations to minimize redundancy. Also, the tool identifies foreign keys which
are attributes in a relation r which are not keys of r, but are keys of another relation in the database

[13]. This function assists the designer in undersianding how the various tables are related.

2.8.9 Database Designer’s Workbench. Like DDEW and DATAID, the last tool listed in
Table I also supports the entire database design process. The functions provided for the logical
design phase include a normalization tool which synthesizes 3NF relations from a set of functional

dependencies [9]. Additional logical design tools are planned for future implementation.

2.4 Summary

Designing a database is a very complex set of activities which is time consuming and, if
not done properly, can lead to a database which does not perform efficiently or which does not
consistently maintain the integrity of the data it is intended to record {15]. Thus, several database
design methodologies have been described in the literature to establish a structured approach to
the task of database design. Most of the approaches follow clearly defined steps or phases for
the design process. And since the process of database design is very complex, these structured

design approaches will help to ensure that all important information is considered and ultimately

20

R L L AR RREAOAGK

N G N

08 mrh aGA'alA"alA ata " adat an 0 T Eanw 00 a0 dat At Sab A Eod ot AAAERA'S A AL AR MA A R AL LTV LVTWITWN IV W AWV Y- ™" vy

incorporated into the database [15]. Thereby, ensuring the quality and integrity of the database

design.

Additionally, since many of the tasks involved in designing a database are time consuming
and repetitive, they are good candidates for Computer Aided Design (CAD) tools [19]. Therefore,
many researchers have developed computer tools to aid database designers. Although researchers
have investigated implementing CAD tools to assist designers in all phases of database design, a
significant effort has been applied in the area of logica' design. This is because the process of logical
design is well suited for computer assistance because the process can be time consuming, repetitive,

and it can be structured into a clearly defined set of steps.

Although the computer tools presented in Table I implement several approaches to logical
database design, most of the tools assist with the process of normalization. To accomplish normal-
ization, the tools contain a variety of algorithms to manipulate data dependencies, and to generate

- the normalized set of relations. The basic set of algorithms needed for this process includes the al-

XY
".' gorithms for finding a minimal cover of a set of dependencies, generating attribute closure, ensuring
decompositions are lossless either by incorporating this check into the decomposition algorithms or
by implementing a separate algorithm to check for losslessness, and normalization algorithms for
generating the normalized database schemes. Additionally, other algorithms can be very helpful to

the designer, such as the one implemented to generate instances of Armstrong relations to help the

designer find the dependencies for a database.

Most of the normalization tools presented focus on designing database schemes in one or two

AR normal forms. And, although many researchers have pointed out that decomposition algorithms
will generate different designs depending on the minimal cover used as input, none of the tools
attempt to generate alternative designs by autornatically generating all possible minimal covers.

Additionally, the majority of the tools normalize relations into 3NF or BCNF using only
functional dependencies, or into 4NF using only multivalued dependencies. Most tools do not use

f:,

21

At ATt . . . P P L » - R I N A L S PR LI LK W R W “w A, S a oW S e N
TR L T S I A 2 B TN A R T A IR ST AR NP A S| (A NN NI N AN

Wmmmmmmwmm.m“vm WS WIWY LW, ¥, 'r
LY

»

:c js;\ an approach to normalization which integrates both FDs and MVDs. This limits the types of data
1)

dependencies which a designer can specify for a particular set of data.

'Q Thus, although many researchers have developed computer tools to assist with logical design
W of relational databases, a tool which could automatically generate alternative designs by computing
. different minimal covers, normalize relations using FDs, MVDs, and both types of dependencies
together, and which could help the designer determine the dependencies for a certain set of data

e would be very useful as a design aid, a research tool, and to students studying database design.

'-“1- -“

-
-

i

N
S

22

"

T U T A P P SO N P L Pty S N Y

. e e . e te e
R A A

bo-altah 2027020 88 ate A% A% 0% 40e A% 2ha Ba BRa o A BTA AR Bl Bl Bl Sl Rl Bl id "-1

III. Requirements Analysis

3.1 System Objectives

The overal] objective of the Dependency Theory Toolbox is to automate algorithms which are

used to design logical structures for relational databases, and to provide an interface to the toolbox

L

» S

which helps the user work with the algorithms. The system is intended for use in an academic

r
L3

N
-

environment as a teaching aid and research tool rather than for practical application to database
design problems. However, the tool could be used to design small relational databases which have

a limited number of attributes.

Additionally, a long range objective of the toolbox is to serve as a normalization tool in a
suite of stand-alone database design tools developed at AFIT. Therefore, the file formats used by
the toolbox must be designed to provide a standard interface so database attributes and constraints

can be passed between all tools.

3.
LA
3.2 System User
Since this design tool is mainly for use in an academic environment, the system users will
be instructors and students who are studying dependency theory and relational database design.
Therefore, the system can be designed for users who are familiar with dependency theory and
normalization concepts.
3.3 Functional Requirements
The functional requirements for the toolbox were defined and analyzed using Structured
Analysis and Design Technique (SADT). SADT is a methodology for accomplishing functional
analysis and system design. In this methodology, SADT diagrams are used to document the
system requirements. The requirements analysis was done in a top-down, structured, modular, and
A hierarchical fashion. That is, the top level requirements were defined first, and then the next lower
‘.gr‘t;s

23

« Ca T PR L R A P R I P s PO N
A A R O O e 2t A SN U N T Sy iy T Py S vy o e o gy S

A

<

C A Y

level in the function hierarchy was defined, and so on, until the lowest level functions were defined.

Additionally, the functional requirements were grouped into modules of related activities.

The SADT diagrams which define and document the functional requirements for this toolbox
are contained in Appendix B. The diagrams explain “what” the requirements are, and the pages of
text which correspond to each diagram explain the requirements in more detail and explain “why”

some of the requirements exist.

3.4 Database Design Algorithms Required to Implement Functions

The requirements analysis revealed that the toolbox must contain algorithms to accomplish

several functions. Definitions of some of the pertinent terms are presented before the list of algo-

rithms.

e superkey: a set of attributes which uniquely identifies each entity (tuple) of a relation. That

is, a superkey functionally determines all attributes in the relation.
e candidate key: a superkey which has no proper subset which is also a superkey:.

e primary key: a candidate key which the database designer chooses to use as the primary

means to identify each element (entity) in a set of entities.

e fully dependent: an attribute is fully dependent on a set of attributes when it is functionally
dependent on the entire set of attributes, but not dependent on any subset of the attributes.
o trivial FD: an FD, X — Y is trivial if Y C X.

o trivial MVD: an MVD, X——Y, is trivial whenever Y C X or Y U X equals all the attributes

in the relation being considered.

1. 3NF Designs. Third Normal Form (3NF) is a normal form in which each relation of a

database conforms to the following restrictions [18]. First of all, each relation cannot contain

24

I IC S IR R TN I AT,

P T 0 o A A TR T W T

nonkey attributes which are functionally dependent on part of the primary key for the rela-
tion. In other words, each nonkey attribute of each relation must be fully dependent on the
primary key. (This requirement causes the relations to be in 2NF). Additionally, no relation
can contain a nonkey attribute which is dependent on another nonkey attribute. This last

requirement ensures that no nonkey attribute is transitively dependent on the primary key.

. BCNF Designs. Boyce/Codd Normal Form (BCNF) is a stronger normal form than 3NF.

BCNF has the same restrictions as named above for 3NF, however, BCNF also requires that

the LHS of each nontrivial furctional dependency be a superkey of the relation it applies to

[16].

. 4NF Designs. Fourth Normal Form (4NF) is a normal form which is defined exactly like

BCNF except that instead of functional dependencies, the 4NF definition uses multivalued
dependencies [16). That is, the LHS of each nontrivial multivalued dependency must be a

superkey of the relation it applies to.

. Minimal Cover of a Set of FDs. A minimal cover of a set of FDs is a reduced set of

FDs which is equivalent to the original set, but with no redundancies. See Section 2.3.1
for a detailed definition. This function is required in the toolbox because, as explained in
Section 2.3.1, the concept of minimal cover is central to normalization. Minimal covers are
important because the cover contains all the same “potential” information as the original set;
however, since the redundancies have been removed, the relations generated from a minimal
cover should contain less redundancy [8]. This function will be used by the user as a stand-

alone function, and by the normalization algorithms.

. Minimal Cover of a Set of MVDs. As described above for FDs, the minimal cover of a

set of MVDs is a reduced set of MVDs which 1s equivalent to the original set, but with no

redundancies [17]. See Section 2.3.2.3 for a detailed definition. This function is required in

25

- A

%:7 the toolbox for the same reason as the function described above to find the minimal cover of

a set of FDs.

6. Envelope Set for a Set of FDs and MVDs. As described in Section 2.3.2.2, an envelope

envelope set of MVDs can be used to decompose relations in the context of both FDs and
MVDs [33]. This function is required in the toolbox because the system is required to design

relations in the context of both FDs and MV Ds.

]

. set is the set of MVDs which is logically implied by a set D of FDs and MVDs. The generated

E 7. Attribute Closure. As stated in Section 2.3.3, the closure of an attribute X with respect
to a set of FDs is the set of all attributes functionally determined by X [16]. This function is

required in the toolbox because attribute closure is needed to support other functions required

in the toolbox, such as the minimal cover and 3NF design functions.

8. Membership Algorithm. This algorithm will determine if an FD is in the closure of a
- given set of FDs. This function is required in the toolbox to support other functions required

in the toolbox, such as the attribute closure and minimal cover functions.

9. Instance of Armstrong Relation. This function will generate an instance of an Armstrong
relation (see Section 2.3.7) for a given set of dependencies and attributes. This function is
required in the toolbox to help the system user determine which dependencies should be

specified for a given set of attributes.

10. Dependency Basis of a Set of Attributes. The dependency basis of a set of attributes
X is the set of sets of attributes logically implied by X with respect to a given set of FDs
and MVDs. This function is required in the toolbox to support other toolbox functions such

as finding a minimal cover of a set of MVDs.

26

o TR R ISP JO RTINS R R PRI A R T RSN S R R R I PN .».-.n;_- -.‘--._ o - '.-'.~"_-
fﬁiﬂ%\ﬁ?ﬁﬁiﬂiﬁ.ﬂ-_.m (\'.ALA}..}:Q.?.A:' DRMAR IS IS TNV RN o

PO PR R TR TR R T T TR & W W/ VU WPV TR/ WU T, W Wy WS Y TNE™ e wr T

@ IV. Design Process

4.1 Required System Modules

The required system modules were derived from the functional requirements defined in the
SADT diagrams in Appendix B. The structure charts in Appendix C show the top level modules
and their relationships to one another. The toolbox contains many additional lower level modules
which support these top level functions. The function of each module is documented in the module

headers in the toolbox program listings.

4.2 Algorithm Selection

The requirements analysis revealed that the toolbox must contain algorithms to accomplish

the following main functions:

Envelope Set

FD/MVD Minimal Cover

Dependency Basis

o 4NF Decomposition

BCNF Decomposition 1

e INF Decomposition

Minimal Cover

Membership Algorithm

Attribute Closure

Armstrong Relation function

Alternative Logical Designs

, TR AN A) . o
T T T R s N SR AR

T TP T s T T TR TS TR TN T AT AN I TR TE TN

For most of the functions, many different algorithms have been published to accomplish each
task, therefore, it was necessary to select the one which best suited our objectives. The main

selection criteria were:

e time complexity
e implementation time

o availability

Time complexity was an important criteria because we wanted algorithms which would execute 1n
a reasonable amount of time (i.e., polynomial time or faster). Implementation time was important
because we needed algorithms which could be implemented within the time limits of this project.
Availability was used as a selection criteria because if source code was available for an algorithm. or
if detailed pseudo code was available in the literature, there was no reason to redevelop something

that was already done as long as the time complexity of the algorithm was acceptable.

The time complexity of an algorithm is a measure of the amount of time required for the
algorithm to execute. For this application, we were mainly concerned with the worst case running
time of the algorithms. The worst case running time, or “order of” an algorithm, can be determined
by analyzing the performance of the algorithm with respect to the dimensions of the objects it
manipulates. Therefore, an “order of” analysis was done using this approach to compare the
running times of algorithms considered for implementation in the toolbox. If the analysis of a

specific algorithm was previously done in the literature, the analysis is cited.

The space complexity of the algorithms, that is, the amount of space used by the algorithm,
was not a critical factor for most of the algorithms because the space required by the algorithms
will not vary significantly. For example, a 3NF design algorithm generates a set of relation schemes,

and regardless of how the algorithm generates those schemes, the number of schemes output by

different algorithms will not vary significantly. This is also true for other algorithms, such as

28

”l'\"."l‘lw‘\l"

AJQ.L".L“A.}LALJ

ARRRIAN

-

T
PO

AR N

"
DAL,

LA\ [

L

v

the minimal cover algorithm, dependency basis algorithm, and other algorithms required in the
toolbox. However, space complexity is an important factor for selecting an algorithm to generate
alternative designs since this algorithm could potentially generate a large number of database
schemes. Therefore, space complexity was considered in the examination of alternative design

algorithms.

The following subsections document the algorithm selection process, and the pseudo code for

each algorithm selected for implementation.

4.2.1 Envelope Set, FD/MVD Minimal Cover, Dependency Basis, {NF and BCNF Dccom-
position. Several of the functions have been implemented in the Scheme Design System [17] which
was available at AFIT, and therefore, the algorithms implemented were candidates for the toolbox
as long as the time complexity of their execution was polynomial time. The algorithm implemented
in the SDS to compute the envelope set has a time complexity which is polynomial in the size of
the set of MVDs and FDs used as input [17]. Additionally, the time complexity of the FD/MVD
minimal cover algorithm implemented in the SDS is polynomial in the size of the set of dependen-
cies used as input [17].Therefore, these two algorithms were acceptable for implementation in the

toolbox.

The SDS also contained a dependency basis algorithm and a single algorithm for generating
4NF or BCNF database designs. These algorithms also execute in polynomial time [17]. Therefore,
the algorithms for BCNF decomposition, 4NF decomposition, FD/MVD minimal cover, envelope
set, and dependency basis were taken from the SDS and adapted for use in the toolbox. The pseudo

code for these algorithms is presented below as it appears in [17).
Dependency Basis

See Section 2.3.2.1 for the definition of dependency basis.
INPUT: A set of attributes U and a set of MVDs M on U.

OUTPUT: Dependency basis of X with respect to M.
begin

29

WRN W WY WM 'V"J“'Urd“"‘iri"-llT

T NN WY N RURT RN U VWL YU WY N T WY W TR T O WV W N R WO VOO RO RO AT RO R RAAT A RS TR S vy
& = 2 © - - b b b ~

K @ §=U-X);
W repeat

look for dependencies V —— W in M and aset Y
) inSsuchthat YNnW #0butY NV =6,
y replace Y byYNWand Y — W in S,

o uniil no more change can be made to S;
':n Output S;
W end
“-:
2y Envelope Set
3
See Section 2.3.2.2 for the definition of Envelope Set.
)
K, INPUT: A set D of MVDs M and FDs F.
OUTPUT: The envelope set E(D) of D.
[begin
: 1. Let F = {F1,F2,...,F,}, where there are
- no F; and Fj(1 <i,j < n) with the same LHS;
2. if(F = @) then return (M),
3 Fi={X—2A4A1,X 2 A2,... . X = Aj|Fi=(X—=Y)eF
" and Y = A1A2... A; where
Ai(1 < k < j) is a single attribute};
. F' = U FI
b e F”—{X——HYIA—v}’lsmF’}
JRRJ 4 M'=MUF"
‘\,‘: 5. Let LHS(M') be {X1,X2,...,X,};
. M'"={X; — W, | X; € LHS(M') and W, € DEPy.(X,)};
. NOTE: DEPp(X;) tepresents the dependency basis of
X X with respect to M’.
v 6. Delete X —— Y from M’ if:
a) thereis W — Z in Fsuchthat WC X and Y C Z; or
N : b) there is S € DEPy:(X)and Y C S,
S*' and thereis W — Z in Fsuchthat Y C Z and WNS =190
7. Output M”.
$ end.
A
FD/MVD Minimal Cover
o The following algorithm generates the minimal cover of a set of MVDs. (See Section 2.3.2.3
)
)
for the definition of an MVD minimal cover.) In order to generate the minimal cover of a set of
; dependencies which contains both FDs and MVDs, the envelope set of the dependencies must be
i computed as shown in the above algorithm, and then provided as input to this algorithm.
- INPUT: A set of attributes U and set of MVDs M on U.
A
5 30

1\- LR

T

YA e VL [R 4
.
L)

OASIKEARLE -\"'-\>\.s.\~.\-.‘-~.\ VLSRN
W W Ol St

A

gmwnmmmmnwnnﬂmnmwrawnn LA L 'R il Rt fod Bl R R B Bl Bal Bdl Balh Bl Sal |

,% OUTPUT: The minimal cover of set M.
begin
1. {eliminate reducible attributes}
For (each X € LHS(M)) do
begin
1.1. {eliminate trivial MVDs}
For (each X ——V € M) do
if (VC X or XV =U) then delete X —— V from M;
1.2. {obtain right reduced MVDs}
Calculate DEP(X);
Replace X —— V by X —— V; | Vo |...| V, where
Wiva.. ,,_VandV(l<|<n)€DEP(X)
1.3. {obtam left-reduced and transferable MVDs}
For (each A € X) do
begin
calculate DEP(X — A);
if (there is V € DEP(X — A) and V; C VA) then
replace X —— V by (X - A) = V;
end
end
2. {delete redundant MVDs}
For (each X ——V € M) do
begin
M =M—-(X — V),
if (V € DEPp: (X)) then
delete X —— V from M;

(,. - end
o 3. Output M;

end

4NF and BCNF Decomposition

Only one algorithm is needed to generate ANF and BCNF decompositions. The schemes
generated by the algorithm are in 4NF if the input set of dependencies includes MVDs, and they
are in BCNF if the input set of dependencies includes FDs only. (See Section 3.4 for the definitions

of 4NF and BCNF.) The algorithm is preceded by pertinent definitions from [17}.
e D: an input set of FDs and/or MVDs.
e M: minimum cover of the envelope set E(D).
e M~: {X =— W|X —— W is areduced MVD in M*}.

e keys: LHS(M).
31

..... ~a RTRTON T A Ty

N . .
uhf.\.f.:."a._:.' L mmw’ "

o M’: set of MVDs which results from randomly selecting one MVD

¢ X —— Wirom M~ foreach X € LHS(M~).

e M*: M* =M~ —M'. M" is a 4NF covering of M [33].

e sp-ordering: a sequence of elements Xy, X3,..., Xn is a sp-ordering if:
(1) X; € X; implies 1 £i< j < n, and
(2) if D logically implies X; — X; but D does not

logically imply X, — X;,

then1<i<j<n.

INPUT: A universal set of attributes U and M*;
OUTPUT: 4NF decompositions over U,

begin
1. Let LHS(M*®) = {X;,X3,...,X,} be in sp-ordering;
2. R={U};
3. For i=1tondo
begin
if there is a Ul in R such that Ul is
decomposable with respect to X; —=— Y in M*
then replace Ul by U1 N XY and U'1 — (Y — X)),
end
4. Output R;
end

4.2.2 SNF Decomposition, Minimal Cover, Membership Algorithm, Attribute Closure. An-
other database design tool which was available at AFIT (see reference [15]) contains a 3NF algo-
rithm which was considered for implementation in the toolbox. However, analysis of the algorithm
revealed that it did not compute closures when performing left reductions and when eliminating
redundant attributes. This could lead to generation of schemes which are not in 3NF. Specifically,
as described in Section 2.3.1, in order for a set of FDs to be minimal, the LHS of each FD must be
reduced. That is, if an attribute can be removed from the LHS of an FD without changing F*, then

the extraneous attribute must be removed [16]. The algorithm in [15] does not remove attributes

32

e a T AN o o o e S

o

4

o)

eyt ﬁ N .",'\ '-‘.'-,'- \.'-\.'-\}'n..-.:.'-.\\ ' ‘-),". o h'.'-

14 g At ket el faN gov Y™ N ROy \he RVa Sk AU B0 'alo e e AR tal Sal ol Sol Sal Gl Rak God ok §

and then compute the closure, it just looks to see if a subset of the LHS of an FD determines the
same RHS and is an FD in the given set. If so, the FD with the larger LHS is removed. The
problem with this is that FDs may be implied by the LHS which are not present in the set of FDs,

and so extraneous attributes may be left in the LHS if the implied FD does not exist explicitly.

For example, if the given set of FDs, F, is:

AB—D
B—-C

C—D

AB — D should be reduced to B — D since B — D is implied by B — C and C — D through
transitivity. However, the algorithm in [15] will not reduce AB — D because B — D does not exist
explicitly in F, and the algorithm does not compute the closure to see if B — D is in F*. The
relation created for AB — D (i.e., ABD) is not in 3NF since a subset of the LHS of AB — D also
determines D. That is, all nonkey attributes of ABD (i.e., D) are not fully dependent on the key
(i.e., AB). (see Section 3.4 for definition of 3NF). Since a 3NF relation cannot have any attribute
that is functionally dependent on only part of the key (such as B — D in the example), ABD is
not in 3INF, and thus the database design is not in 3NF. Thus, it is necessary to compute attribute

closure for the normalization process since implied dependencies can cause relation schenies to not

be in a certain normal form.

Another problem with the 3NF algorithm implemented in [15] is no steps are taken to ensure
all attributes in the universal set of attributes are represented in a relation. For example, if the

given set of FDs, F, is:

AB —-D
B—-C

C—-D

33

TSI J"’ 'ﬁ- "

A :- ‘I\\ ‘f‘-"f“ﬁ“ - ‘ ‘*»"‘I "“{‘n‘ --.:-‘.-.. ;.,:‘....‘..\
A NS e L0 LD 0 » h

T

LAY S B—D

AB - D will be eliminated since B — D is explicitly represented in F. However, now no FD

3 VAN YRR
B
[4

in F contains attribute A, so when relations are generated for each FD, no relation will contain
attribute A. This problem also occurs if the universal set of attributes contains attributes whicl
are not contained in any of the FDs which hold on those attributes. For example, if the universal

set of attributes is A B C D E and the set of FDs which hold on the attributes is:

AB—-D

B—-C

C—-D

Then, since no FD contains E, no relation generated will contain E.

Due to these problems, other 3NF algorithms were reviewed for implementation. Other 3NF

algorithms examined [5,8,16,3] all started with finding a minimal cover as the first step, therefore,

®
v it was essential to find an efficient algorithm for computing a minimal cover.
A linear time, O(n), membership algorithm which can be used to produce the minimal cover
is presented in [3]. The purpose of the membership algorithm is to determine if an FD is in the
closure of a set of FDs. Thus, the membership algorithm can be used to left reduce FDs, and to
remove redundant FDs from the set of FDs in the following manner.
The linear time membership algorithm can be used to left reduce FDs, that is, to remove
|
extraneous attributes, B, from the LHS of an FD (say, LHS — A) by testing to see if (LHS - {
{B}) — Aisin F*. A simple procedure for accomplishing left reduction follows [3): }
\
Left Reduction of FDs: |
X’'=LHS of an FD
do for each B € LHS of the FD;
if(X'-{B}— Aisin Ft)
then X' = X' - { B}
end
I- L)
l’ I..
'} f

34

My " ? ol AT < w Py o o M ot N A
W ATAS N 2% A A A T S IR (h . .

ry L) (3 LA L L ‘at - - - - S . ‘at. ai_-at U U ‘ate gt [RFOWIRr ey N ¥, 4% ala’ , 1o gty g gl O o 2t N AP

7;.
¢
o
K
‘$ WS
:." % The time complexity of the left reduction procedure is derived as follows in [3). The set of
¢
e FDs, F, contains FDs {f, f2,...,fn}. Each FD f has attributes on its left hand side and right
| . hand side from the universal set of attributes {4;, A,,..., A,n}. If the attributes are represented
S by integers {1,2,...,m]}, then F can be represented as a string of pairs of integers representing the
. LHS and RHS of each FD. The length of this representation of F is denoted by |F|. Additionally,
- since each attribute in an FD f appears in at least one FD (i.e., at least in f), then |f| < |F]|.
:’ where | f| denotes the number of attributes in f [3].
In the left reduction procedure, each extraneous attribute is eliminated in time O(|F|) since

>
:j the membership algorithm can compute the closure of a set of attributes in time O(|F|). (The
N
. analysis of the membership algorithm is given below). Then, since each attribute on the LHS of

] each FD must be checked, the entire reduction procedure for the set of FDs, F, takes time O(|F|?)
s
» .‘P
b . The membership algorithm can also be used to eliminate redundant FDs by testing to see if
. (,' an FD, f, is in the closure of F - {f} {3]. The following procedure can be used to remove redundant
>»

FDs from F [3]:

P

Delete Redundant FDs:

i begin
> G=F;
o, do for each f € F;
- if f € (G- {f})* then G = G- {f}
- end
L
:
3 The time complexity of the above algorithm is O(n|F|), where n is the number of FDs in F
“~
A [3]. This follows from the fact that the membership algorithm must be executed once for each FD
;’ in F.
N
Y
)
0
)
. —
1A
. 35
4
Yy 1]
8
o
" C AN

T AN R Ly ey s T

e
AL

T I IN/

1 nd Bat dab Sa¥ Bu? $:% 240 9a% Bat fu’ fa’ fa' Rt 2a¢ 4oV o b o' Rt s ot ® 4a Bt gai ba) gav dav Sa ot Batolle’ Sevors'ofa' ke ot oM aka—git a¥h il ol AR ur il Al b Iab Rel Sob Sabo et fey |

%
W]
3
a.:
: .:;\$~ The linear time membership algorithm is shown in the following pseudo code as it is presented
& >‘ ’»‘
" in [3);
L
\
1.4
)
o, Linear Time Membership Algorithm for FDs:
0!‘
INPUT: A set F of n FDs on attributes {A,,..., A} and
w an FD f: X — A.
o OUTPUT: “YES” if f € F*; “NO” if f€ F*.
A
&
A
~ DATA STRUCTURES:
fo
- 1. Attributes are represented by integers between 1 and m.
': 2. FDs in F are represented by integers between 1 and n.
o 3. LS[1:n], RS[1:n] are arrays of sets containing the attributes on the left and right sides of each
FD.
.- 4. DEPEND is a set of attributes found to be functionally dependent on X so far.
9 5. NEWDEPEND is a subset of DEPEND that has not yet been examined.
:‘_' 6. COUNTER[l:n] is an array containing the number of attributes on the left side of each FD
, ('.'-A that have not yet been found to be in DEPEND.
. Ml 7. ATTRLIST([1:m] is an array of lists of FDs specifying for each attribute the FDs with that
o attribute on their left sides.
- ALGORITHM:
begin
. INITIALIZE: do i = 1 to m;
o~ ATTRLIST[m] = 0
. end
: doi=1ton;
2 COUNTER][i] = 0;
do for each j € LS[i];
3, ATTRLIST[j] = ATTRLIST[;j] U {i};
L COUNTER][i] = COUNTERJ{] + 1;
end
W end
1 DEPEND = X;
NEWDEPEND = DEPEND;
FIND.NEW_ATTR:
< do while (NEWDEPEND # 9)
s select NEXT_.TO_.CHECK from NEWDEPEND,;
NEWDEPEND = NEWDEPEND - {NEXT_.TO.CHECK};
" CHECK_FDS:
. do for each i € ATTRLIST(NEXT_TO.CHECK)
s
v oy
. .
"
it L AT S T S T (NS AN Ny \.‘-.'"\"\"\-.&-.u'“,."-."-,'-."-»“ A

Cha e M G e I

AN Ao

| ALLLTL

pro—
(2 2220 p

A

SIS

a N b B It al B

-

&

COUNTER[i] = COUNTER[i] - 1;
if (COUNTER[i] = 0)
then do for each j € RS[i];
if (j € DEPEND)
_ then begin
DEPEND = DEPEND U {j};
NEWDEPEND = NEWDEPEND U {j}
end
end
end CHECK_FDS
end FIND.NEW_ATTRS
PRINT:
if A € DEPEND
then print “YES”
else print “NO”
end

The time complexity of the above algorithm is derived as follows [3]. The INITIALIZE routine
has a time complexity of O(|F|) since it basically consists of stepping through each FD in F and
performing a constant set of operations for each attribute in the LHS of the FDs. The complexity
of INITIALIZE is added to the complexity of FIND_NEW_ATTR which is O(]F|) since “for each
attribute in NEWDEPEND, the FIND_.NEW_ATTR loop follows a constant number of steps for
each occurrence of that attribute on the left side of an FD in F. Similarly, each right side of an
FD in F is visited at most once in FIND . NEW_ATTR”(3, page 47]. Thus, the time complexity of

FIND.NEW_ATTR is O(|F]) so the time complexity of the entire algorithm is O(|F|) [3].

The above algorithms for left reduction, deleting redundant FDs, and computing member-
ship met all three of the algorithm selection criteria. That is, they all had a reasonable time
complexity, reasonable estimated implementation time, and the pseudo code was available in the
literature. Therefore, they were chosen for implementation in the toolbox to support the mini-
mal cover function, the 3NF decomposition function, the membership algorithm function, and the

attribute closure function.

Now, with an efficient way to find out if FDs are in the closure of a set of FDs, the minimal

cover algorithm can be implemented in the toolbox as follows:

37

- . - S W g W W
»."."'.' ’\-- \‘-"v Sap'y '~.

FD Minimal Cover:

INPUT: a set F of FDs.
OUTPUT: a minimal cover of F.

begin
right reduce FDs (i.e. ensure each FD has only one attribute on its RHS);
left reduce FDs;

delete redundant FDs;
end

The time complexity of the minimal cover algorithm is derived as follows. The right reduction
procedure has a time complexity of O(|F|) since it consists of stepping through each FD in F and
performing a constant number of operations based on the number of attributes in the RHS of each
FD. Then, as stated above, the time complexity of the left reduction is O(|F}?), and the time
complexity of the deletion of redundant FDs is O(n|F|) where n is the number of FDs in F. We
know that n < |F| because each FD must contain at least two distinct attributes since the minimal
cover algorithm removes trivial dependencies such as A — A. Therefore, |F| will always contain
at least two attributes for each one FD, and so |F| will always be larger than n. Thus, the time

complexity of the entire algorithm is O(|F|?).

The 3NF decomposition algorithm selected for the toolbox is adapted from an algorithm
presented in [16]. However, the following two steps were added to minimize redundancy. First,
schemes with identical keys were merged into single schemes. And second, when duplicate schemes
occur, one of them is eliminated. (Note: duplicate schemes will occur when two FDs in F have
equal inverted LHS’s and RHS’s, such as A — B and B — A. They will both result in scheme AB
8o one of the AB schemes should be eliminated.) The pseudo code for the 3NF algorithm follows:
3NF Decomposition Algorithm:

INPUT: & universal set of attributes (universal relation scheme)
and a set F of FDs which hold on the universal attributes.

OUTPUT: a set of relation schemes R in 3NF.

F. = a minimal cover of F
R =0;

c@% foreach FD X — Y in F, do
L8 begin
R =R U {XY}
end

Combine schemes in R with identical candidate keys;
if none of the schemes in R contains a candidate key for R
then begin
R = R U {any candidate key for R};
end
if two schemes are equal
then delete one of the schemes

return(R)

The time complexity of this 3NF decomposition algorithm is derived as follows. The minimal

cover procedure has a complexity of O(|F|?), as described above. Then, building a scheme for each

FD is of O(n), where n is again the number of FDs in F, since this function merely scans the set of

FDs F and performs a constant number of operations for each FD to create the schemes. Merging

(L . schemes with identical keys has a time complexity of O{n?) since the key of each scheme (one scheme
’ per FD) must be compared to the key of each of the other schemes and then a constant number of
operations are done when two schemes’ keys are identical. Next, ensuring that at least one scheme

contains a candidate key requires two steps. First, the relations must be scanned to see if one of

them already contains a candidate key. This is done by using the membership algorithm .o see if

vne key for the particular scheme determines all of the attributes of the universal relation. Thus,

since the membership algorithm’s complexity is O(|F|), and the worst case number of schemes

is equal to n (that is, if no identical keys were merged), then the time complexity of searching

the relations for one that contains a candidate key is O(n|F|). Second, if no relation contains a

candidate key, one must be found and put into a new relation. A candidate key can be found

by creating a trivial FD with both the LHS and the RHS equal to the universal set of attributes,

then left reducing the trivial FD. This leaves a LHS which determines the entire set of attributes

but does not contain any extraneous attributes. Thus, the LHS is a candidate key. This process

39

TR Ty T T e e AT ,’II- LS UL)
1'5:"'t"'n"':‘thr o E\'\E' A R S S S o e A T AT AN e ‘ e Y \.c._,t

o

A..'a..i

has a time complexity of O(|F|?) since it basically involves executing the left reduction algorithm
one time. The last function, removing duplicate schemes, is of O(n?) since each scheme must be
compared to every other scheme. Since we know that n < |F|, as described above, then n < |F|,

2 < |F|?, and n? < n|F|. Thus, combining the time complexity of each portion of the algorithm

results in a time complexity of O(|F|?) for the entire 3NF decomposition algorithm.

Another 3NF algorithm is presented in [3], however, since its execution time is also O{|F|?)
[3], it offered no advantages over the algorithm described above, and thus the above algorithm was

selected for implementation in the toolbox.

The membership algorithm function and the attribute closure function were both implemented
using the linear time membership algorithm described above. The membership algorithm function
could of course use the algorithm directly. The attribute closure function could be implemented
using the membership algorithm because when the algorithm terminates, the variable DEPEND
contains the closure of the LHS of the FD passed to it. Thus, to compute the closure of a set of
attributes X, the attribute closure function must simply pass the membership algorithm a trivial
FD X — X. When the membership algorithm terminates, DEPEND will contain the closure of
X with respect to the given set of FDs. Since both functions basically consist of executing the

membership algorithm one time, they are both O(|F]) functions.

4.2.3 Instance of an Armstrong Relation. The function which generates instances of Arm-
strong relations contains several main algorithms. A review of the literature on Armstrong relations
revealed that only one source had published a description of the algorithms in enough detail to de-
velop a working function for the toolbox. The article [26] indicates that a tool which could generate
instances of Armstrong relations had been developed at UCLA, however, more recent information
indicates the tool no longer exists [20]. Since only one source of the algorithms was available. the
algorithm selection criteria did not need to be applied, and an analysis of the time complexity was

not necessary for comparison purposes. A description of the required functions and the pseudo code

40

“~ P . - '-~' .4_...\ LT e ', \\\,\‘\ﬁ
AT ﬁmn\i&&mm@ AAA.&M&-AMM&MLA;A.&A\.)“A&A_-A A). ..Lh..x.x.\.&_ L ‘t&.’d

R

bt o ge

Vi e o S

[ied o D 36 2

¥R NG G NET L pir g T alat i [PEYURTIN TU U TORTO 5 3.0 A A3 0.0 b 2.0 matiartta dta e dte M i e Ale g Ata Rin Ale Bla Ale Mo RSa Bt Ria e e S ke e AN AL Ate Aa AR d, |

.&?\ for the required algorithms follows. The description and the pseudo code are drawn directly from
“ -

{26], and thus the presentation represents a summary of the work done by Silva and Melkanoff.

The general steps required to generate an instance of an Armstrong relation are shown in the
high level pseudo code below. The code defines the driver for the entire function. The pseudo code

for each function listed in the driver is presented in subsequent sections.

Armstrong Instance Driver:

INPUT: a universal set of attributes (universal relation)
and a set of FDs and/or MVDs which hold on the universal
relation.

OUTPUT:an instance of an Armstrong relation for the given input.

begin
1. Set L = 0, where L is a counter used by the decomposition
algorithm in Step 2. A unique value of L is associated with
each relation generated, and the same value of L is associated
with the set of FDs which hold on each relation.

2. Decompose the universal relation into a dependency preserving,
lossless join decomposition.

(9 3. Rearrange the relations generated by the decomposition algorithm
so they are in a form which can easily represent the
relationships among each attribute.

4. Compute the minimum domain size of each attribute required to
represent the FDs and MVDs.

5. Build a unary relation for each attribute with the minimum number
of values in each relation.

6. Generate an instance for each relation in the database
scheme with each instance showing the appropriate relationships
between its attributes.

7. Compute the natural join of all the relation schemes to
create an instance of the universal relation. This instance is
an instance of an Armstrong relation.

8. Display the instance of the Armstrong relation to the user.
end

.;Q

e

"
._»

>
h}

41

oG R G eyt e A e e ooy, A DA AT Y Tl e a Ao e Mo L L Dl dn, o

-
D

LA

~
-
-
»

Lnwlelyl ek e

S&"; 4-2.8.1 Integrated FD/MVD Decomposition. As shown in the steps above, in order
to generate an instance of an Armstrong relation, the universal relation must first be decomposed
into a dependency preserving, lossless join relation scheme. The decomposition algorithm used by
Silva and Melkanoff in [26] is defined by Melkanoff and Zaniolo in [21). This same algorithm was
implemented in the toolbox because the remaining steps needed to generate the instance depend
on the specific cases which result from the Zaniolo/Melkanoff algorithm (explained below). Thus. if
a different decomposition algorithm was used, say the iNF/BCNF algorithm already implemented
in the toolbox, the resulting schemes would not represent the cases which the other algorithms in

the Armstrong relation function require, and thus all new algorithms would have to be written.

The pseudo code for the decomposition algorithm from [21] is shown below, and is preceded

by pertinent definitions.

e clementary FD: an FD of R, X — A, is called elementary if A is not an element of X, and R

“a. contains no X’ — A where X' C X.
1)
e clementary MVD: an MVD of R, X —— Y is called elementary if Y is non-empty and disjoint
from X, and R does not contain another MVD, say X' —— Y’ where X' C X and Y’ C Y.
Note: according to the above definition, a trivial MVD can be elementary [34]. This is an
important point for the decomposition algorithm since it determines the elementary MVDs
which apply to specific schemes.
o multiple elementary MVDs: an elementary MVD of R is called multiple if R contains other
elementary MVDs with the same LHS; otherwise it is called single.
The following variables must be defined for use in the decomposition algorithm:
o W: the set of attributes to be decomposed.
o R(W): refers to the relation scheme consisting of the set of attributes W
BN
e
Cats

42

\

P Y "W W IO LN U N, PR R L UL SO AU A R P PO T '.-_;..- RS
UA™ A AN A AR ‘l‘!..‘..l‘.!.“l. t.- 4.(" N N * R 0 N L P VN ™ ~ar

“w

-
“»

R

o F: the set of elementary FDs of R(W), that is, the elementary FDs which hold on scheme

R(W).

F,: the set of elementary FDs in F having W as scope, where the scope of an FD, X — Y,

is {XUY}. Thus,ifan FD, X — Y, hasscope W, {XUuY}=W.

F1: the set of elementary FDs of R[W1], where W1 C W. The decomposition algorithm

computes W1 when decomposing W.

F2: the set of elementary FDs of R[W2], where W2 C W, and is also computed by the

decomposition algorithm.

Gm: the set of multiple elementary MVDs of R[W].

G11: the set of elementary MVDs of R[W1] which have right side disjoint from W2.
G22: the set of elementary MVDs of R[W2] which have right side disjoint from W1.

GF: denotes the set of MVD counterparts of F1UF2 (the MVD counterpartof a FD, X — Y,

is the MVD: X — Y)
F*: denotes the set of FDs implied by the set of FDs F.
G*: denotes the set of MVDs implied by the set of MVDs G.

ACOVER: the set of atomic relations generated by the decomposition algorithm, where atomic

means the relations cannot be decomposed any further by this algorithm.
ZCOVER: the set of all FDs associated with the relations.

L: a counter which must be initialized to 0 in the calling program, prior to calling this

decomposition algorithm.

Decomposition Algorithm

INPUT: aset of attributes W, and a set of FDs and/or MVDs which

hold on those attributes.

OUTPUT:ACOVER and ZCOVER.

procedure DECOMPOSE(W)
begin
STEP1: DETERMINE(F,Gy);
STEP2: FLAG = false;
for each X — A€ F do
if X U{A} = W then
begin
FLAG = true;
ZCOVER=ZCOVERU {L: X — A},
F=F-{X — A}
end STEP2;
if G = 0 then
STEP3:
begin
ACOVER = ACOVER U {L : W},
L=L+1,
end STEP3;
else
STEP4:
begin
NOTFOUND = true;
for each X —— Y € G,,, while NOTFOUND do

begin
Wil=XuY;
W2=W-Y,;

COMPUTE(F1, F2,GFr,G11,G22),

if (F- F,) C(F1UF2)* and
Gm C(GrUG11UG22)*t then

begin
if FLAGthen L=L +1;
DECOMPOSE(W1)
DECOMPOSE(W2)
NOTFOUND = false;

end

end;
if NOTFOUND then REPORTFAILURE
end STEP4
end DECOMPOSE;

The decomposition algorithm will call the REPORTFAILURE routine if it cannot find a
suitable decomposition which will preserve all dependencies. Otherwise, it will generate a set of
relations (referred to as the ACOVERY), and the set of FDs which hold on those relations (referred
to as the ZCOVER). The ZCOVER is a minimal cover of the FDs which were given to hold on the

universal set of attributes.

44

Wy
a\t ~

K

)
1

IS : P4
RMCATOAR A ™

The DECOMPOSE algorithm generates relations which can have the following relationships

among their attributes [26].

o one-lo-one: every different X value corresponds to a different Y value, that is, X — Y and

Y - X.

e many-lo-one: one or more X values may correspond to the same Y value, but no X value

corresponds to more than one Y value, that is, X — Y and Y does not determine X.

e many-to-many: X does not determine Y and Y does not determine X. That is, one or more
X values may correspond to the same Y values and one or more Y values may correspond to

the same X value.
e combined relationships: a combined relationship exists among three combinations (sets of
attributes) X,Y, and Z when {X,Y} — Z and one of the following cases occurs:
1. Z——XandZ ——Y
2 Z—-XadZ—+—Y

3. Z—+—XandZ—Y

In order to generate instances of relations which have the above types of relationships, the

relations and their associated FDs must be rearranged as follows.

4.2.3.2 Rearrangement Procedures. As shown in the driver for the Armstrong in-
stance, after the decomposition process, the relations must be rearranged to facilitate generation
of the instance. Each rearrangement procedure is described below as it is presented in [26]. Addi-
tionally, each procedure is represented by pseudo code following the description.

Rearrangements Due to One-to-One Relationships

“If there is a one-to-one relationship between two combinations X and Y that is X — Y and

Y — X, and |[X| > 1or [Y| > 1, then there may be an FD X — Y or Y — X in the ZCOVER

45

Wy g W gy W, Vg Oy My Ry Wy 7 AT g8 gt
o N 1 ‘..Q.

o LY.

R . x 3

1

- W L

> s s e

oy

- - -

sﬂ

Ve e e,
L o - »

3 Y'Y g av AR e R a8 2R 273 a%R T ‘ol ath ata ad N . Ty . :WWY_'T']’WT’JWW“'JT

without an associated atomic component, and |X| or |Y| additional FDs in the ZCOVER with
associated atomic components. The ACOVER and ZCOVER must be rearranged so that only one

atomic component appears with two FDs with equal inverted left and right hand sides.”[26, page

120]

The pseudo code for this operation follows.

begin
If there are two FDs, X = Y and Y — X, in the
ZCOVER and [|[X|>lor |Y|>1].
then

1. Search the ZCOVERforan FD, X =Y orY — X,
which has no associated relation in the ACOVER.

2. Then search the ZCOVER for |X| or |Y| additional FDs
which have relations in the ACOVER.

(NOTE: this will occur if the RHS of one of the FDs
had more than one attribute since the FD will be right
reduced into |RH S| FDs).

3. Merge all schemes found in Step 2 into a single scheme
by computing the union of the attributes in the schemes,
and add the single scheme to the ACOVER.

4. Associate the two FDs, X - Y and Y — X
in the ZCOVER, with the single scheme just added
to the ACOVER.

end

Rearrangements Due to Many-to-One Relationships

“If there is a many-to-one relationship between two combinations X and Y, that is, X —» Y
and |Y'| > 1, then there may be |Y'| FDs in the ZCOVER. The ACOVER and ZCOVER must be

rearranged so that only one atomic component with one associated FD appears.”[26, page 120]

“If X — Y is an FD associated with atomic component R[X,Y), Z — W is another FD
associated with atomic component R[Z, W] and X contains Z, the ACOVER and ZCOVER must

be rearranged so that only one atomic component R[X, (Y UW)] appears with the FDs X — {YuWV'}

and Z — W.”[26, page 120]

These two steps are accomplished by the following pseudo code.

46

Do ol ba’ Bg o) U gig o'h 'R 8 & 0 Adh Sulk Sad Saff tay !.'IT

% begin
If there is an FD, X — Y, in the ZCOVER, and |Y| > 1,
then merge all schemes which have X as their key (that is,
merge equivalent keys).
For each FD X — Y in the ZCOVER associated with R[X,Y] in the ACOVER
. begin
For each FD Z — W in the ZCOVER associated with R[Z, W] in the ACOVER
begin
KzZcX
then
add R[X,(Y UW)] to the ACOVER
and the associated FDs X — {Y UW}

o and Z — W to the ZCOVER;
N delete R[X,Y] and R[Z,W] from the ACOVER
and the associated FDs X — Y and Z — W
from the ZCOVER,

oA

AN

."

H; end
} ¢
b end
: end
v
¢ Rearrangements Due to Combined Relationships
b
! ",; “If there is a combined relationship among combinations X, Y, and Z, then there is an FD
(:.: {X,Y} — Z in the ZCOVER with no associated atomic component and 2 atomic components
R[X,Z] and R[Y, Z] which belong to one of these three cases:
1. R[X,Z] and R[Y, Z] have no FDs.
:: 2. R[X,Z) has no FD and R[Y,Z] has the FD Z — Y.
h:

3. R[X,Z] has the FD Z — X and R[Y, Z] has no FDs.

The ACOVER and ZCOVER must be rearranged so that only one atomic component appears
associated with the FD {X,Y} — 2. The MVD Z —— X is added to the ZCOVER if there is no
FD Z — X, while the MVD Z —— Y is added to the ZCOVER if there is no FD Z — Y .”[26,

page 120]

The pseudo code for this procedure follows.

begin
for each FD {X,Y} — Z in the ZCOVER
begin

if there is no associated relation in the ACOVER
then

add R[X,Y,Z] to the ACOVER associated with
FD {X,Y} — Z in the ZCOVER;
if R{X,Z] and R[Y, Z] are relations in the
ACOVER with no associated FDs
then
add MVDs Z — X and Z — Y to the
ZCOVER associated with R[X,Y, Z]
in the ACOVER,
else if R[X, Z] has no FDs and R[Y,Z] hasthe FD Z — Y
then
add MVD Z — X to the ZCOVER associated
with R[X,Y,Z] in the ACOVER,
else if R{X, Z] has the FD Z — X and
R[Y, Z] has no FDs
then
add MVD Z —— Y to the ZCOVER associated
with R[X,Y, Z] in the ACOVER,
delete R[X,Z] and R[Y, Z] from the ACOVER;
end
end

4.2.3.8 Computing Minimum Domain Sizes. Once the ACOVER and ZCOVER are
rearranged, instances of each relation can be generated. However, before generating the instances,
the minimum domain sizes for each attribute must be computed to ensure the Armstrong relation

will be the minimum size relation which can represent all the relationships among the attributes.

The following algorithm is used to compute the minimum domain size for each attribute. As
defined in [26] for the algorithm, “F is a boolean variable which indicates if the computation is to
be done again. For each attribute A in relation R(V) there is a variable CT(A) which will contain
the minimum domain size when the algorithm is over. When processing an atomic component
R{X,Y], X and Y are respectively the left and right side of an FD X — Y associated with R[X,Y].
SX and SY are respectively the cardinalities of relations R(X) and S(Y) corresponding to the left
and right sides of the FD with many-to-many relationships among their attributes. LX and LY are

respectively the indices of the last attributes (from left to right) of X and Y.”[26, page 128]

The following algorithm is presented as it appears in {26, page 128]:

3353

TR

LA P A &

XXX
R X - N

it 1

TN

[S Sy

TITEERR

,_-f",,:;. 1. [Initialization] F — TRUE. For each attribute A in V,
CT(A) ~ 2.
2. [Repeat or terminate] If F = TRUE then F — FALSE and
execute step 3, otherwise terminate the algorithm.
3. [Process atomic component] For each atomic component R[X,Y]
determine which relationship exists among its attributes:
If there are two FDs in the ZCOVER with equal inverted
left- and right-hand sides, then there is a one-to-one
relationship; execute step 4 and step 6.
If there is an MVD in the ZCOVER, then there is a combined
relationship; execute step 4 and step 7.
If there is one or more FDs with different alternated
sides and no MVD in the ZCOVER, then there is a many-to-one
(‘: relationship; execute step 4 and step 5.
If there is no FD in the ZCOVER then there is a many-to-many
relationship; so do nothing.
Return to step 2 after all atomic components have been processed.
4. [Compute SX, SY, LX, and LY) Let X — Y be an FD in the
ZCOVER associated with the atomic component R[X,Y].
SX ~ 1. For each attribute A in X, SX ~ SX+CT(A)-1.
SY «— 1. For each attribute B in Y, SY ~ SY+CT(B)-1.
LX « last attribute in X.
LY «~ last attribute in Y.
5. [Many-to-one relationship)

For each attribute A in X, if CT(A) < SY then

49

CT(A) — SY+1, F —~ TRUE.
6. [One-to-one relationship)
For each attribute A in X if CT(A) < |Y| then
CT(A) — |Y|{+ 1, F — TRUE.
For each attribute B in Y if CT(B) < |X| then
CT(B) — |X|+ 1, F — TRUE.
If SX<SY then CT(LX) ~ CT(LX)+SY~-SX, F — TRUE.
If SY<SX then CT(LY) — CT(LY)4+SX~SY, F — TRUE.
7. [Combined relationship)
For each attribute A of the atomic component R{X,Y], if
CT(A)<3 then CT(A) — 3, F — TRUE.
L If SY<SX-2 then CT(LY) ~ CT(LY)+5X-SY-2, F — TRUE.

If SX<SY+2 then CT(LX) — CT(LX)+2-SX, F — TRUE.

4.2.3.4 Building Unary Relations. Once the minimum domain sizes are computed, a
unary relation is built for each attribute. The relation contains the minimum number of values
determined by the above algorithm. Then, instances for the relations which were generated by the

decomposition algorithm are built from the unary relations as described in the following section.

4.2.3.5 Generating Instances. Instances of each relation are built based on the type
of relationships which exist among its attributes. The procedures for constructing instances with

each type of relationship follow.
Construction of Instances with a Many-to-Many Relationship

A relation in the ACOVER has a many-to-many relationship between its attributes if there is

no FD in the ZCOVER associated with that relation. An instance of such arelation, say R(A,B,...),

50

------ e - PRI Rt R IR IR Rt e R LN) -~ S N N S RE N L PO PO L
T R T N T O G T Gt Ry) (e S P iy 5 W, Py At vy PSS

» -

.’}

W

R(A) | S(B) | T(A.B)
Al B1 Al Bl
A2 | B2 | A1 B2
A3 | B3 | A1B3
A2 Bl
A3 Bl

Figure 2. Instance with Many-to-Many Relationship between A and B

can be generated by creating an instance of R(A,B) with a many-to-many relationship between A
and B. And then, creating an instance of R(A,B,C) with a many-to-many relationship between A,B
and C. And then, an instance of R(A,B,C,D) with a many-to-many relationship between A,B,C
and D, etc. A many-to-many relationship can be created in the following manner as described in

(26).

“Given a relation R(X) with a many-to-many relationship among the attributes in X and a
unary relation S(A), a relation T(X,A) with a many-to-many relationship among all attributes in
X and A is constructed by concatenating the first tuple of R(X) with all tuples of S(A) and the

remaining tuples of R(X) with the first tuple of S(A)”[26, page 121].

For example, an instance of R(A,B,C) with a many-to-many relationship among its attributes
can be constructed as follows. Let the domain of A (denoted DOM(A)) = {Al, A2, A3}, DOM(B)
= {B1, B2, B3}, and DOM(C) = {C1, C2, C3}. Then, the instance will be generated in two steps.
First, an instance of T{A,B) will be created with a many-to-many relationship among its attributes

as shown in Figure 2.

Then, an instance of T(A,B,C) will be created as shown in Figure 3.

Construction of Instances with a One-to-One Relationship

An instance of a relation with a one-to-one relationship is generated from two relations con-
sisting of the attributes contained in the LHS and RHS of the FDs which hold on the relation. That

is, if the relation R(X,Y) has FDs X—Y and Y—X, then the instance is generated from the two

51

R TG T G T T G Dy S o R R VA T Py Y WA PSS AR

R(A.B) [5(C) | T(A.B,C)
AlB1 | Cl |AlBICI
A1B2 | C2 |A1B1C2
A1B3 | C3 [A1B1C3

A2 Bl Al B2 C1
A3 Bl Al B3 Cl
A2B1Cl1
A3 B1 Cl

Figure 3. Instance with Many-to-Many Relationship between AB and C

relations R(X) and S(Y), where X and Y are sets of attributes. If X contains only one attribute,

then R(X) is a unary relation which contains all values from the domain of the attribute in X. If

X contains more than one attribute, then R(X) is generated by creating an instance of a relation

with a many-to-many relationship between the attributes in X. The relation S(Y) is also created

in this same way. The instance of the relation with a one-to-one relationship among its attributes,

T(X,Y), is created from the two relations R(X) and S(Y) in the following manner as defined in [26].
1. Set T(X,Y) to the empty set. Remove the first tuple of R(X) and the first tuple

of S(Y), concatenate them and insert the resulting tuple into T(X,Y).

2. If |X| = 1 or |Y| = 1 repeat step 3 until R(X) and S(Y) become empty. If |X| >
1 and |Y| > 1, for each attribute A in X and each attribute B in Y execute step 4.

If some tuples still remain in R(X) and S(Y), repeat step 3 until R(X) and S(Y)
become empty.

3. Remove a tuple of R(X) and a tuple of S(Y), concatenate them and insert the
resulting tuple into T(X,Y).

4. If T(X,Y) does not contain two tuples with A-values = A1 (first value in DOM(A))
but different B-values, execute step 5. If T(X,Y) does not contain two tuples with
different A-values but with B-values = B1 (first value in DOM(B)), execute step
6.

5. Remove a tuple from R(X) with A-value equal to Al and a tuple from S(Y) with
B-value different from B1, concatenate them, and insert the resulting tuple into
T(X)Y).

6. Remove a tuple from R(X) with A-value different from Al and a tuple from S(Y)

with B-value equal to Bl, concatenate them, and insert the resulting tuple into
T(X,Y).

The following example from (26] shows the generation of a relation with a one-to-one rela-

tionship among its attributes. Let X = {A,B,C} and Y = {D,E}, DOM(A) = {A1,A2,A3,A4},

52

. e ., e . B N P P DR L L S R R A A R SR i R R LR A S TR RL RS W AT N W
R T T I T N N A P T T o ALV LI Vo I VB | AoV et AT, 5, W oo

L an gk g5 Q¥ b

gl At o

o

v T

v T e

o
s

A

Rt

R(AB.C) |S(D.E' | T(AB,CDE)

A1 B1C1 | D1 E1 | A1 B1C1D1E]
A1 B1C2 | D1 E2 | A1 Bl C2 D2 El
A1 B1C3 | D1 E3 | A2 B1 C1 D1 E2
A1 B2C1 | D1 E4 | A1 Bl C3D1E3
A1 B3C1 | D2E1 | A3B1C1D3E1
A2B1Cl1 | D3EL | A1 B2C1 D1 E4
A3B1C1 | D4El1 | A1B3IC1D4El
A4 B1Cl | D5E1 | A4 B1Cl1 D5E1

Figure 4. Instance with One-to-One Relationship between ABC and DE [26]

DOM(B) = {B1,B2,B3}, DOM(C) = {C1,C2,C3}, DOM(D) = {D1,D2,D3,D4,D5}, and DOM(E)
= {E1,E2,E3,E4)}. Figure 4 shows the construction of an instance of T(A,B,C,D,E) with a one-to-
one relationship between {A,B,C} and {D,E}.

Construction of Instances with Many-to-One Relationships

Instances with many-to-many relationships are generated from two relations R(X) and S(Y)
which are constructed the same way as described above for one-to-one relationships. The relation

T(X,Y) is created as follows [26, page 124):

1. Concatenate the first tuple of R(X) to the first tuple of S(Y).

2. For each attribute A in X (from right to left) do the following, where s is |S(Y)|,
a is |[DOM(A)| (we must have a>s), and Al is the first value in DOM(A).

(a) Concatenate the first s—1 tuples of R(X) with A-value different from Al to
the second to sth tuples of S(Y).

(b) Concatenate the a — s remaining tuples of R(X) with A-value different from
Al to the first tuple of S(Y).

For example, if the relation R(A,B,C,D) has a many-to-many relationship between {A B}
and {C,D}, the instance can be constructed as follows. Let DOM(A) = {A1,A2,A3,A4}, DOM(B)
= {B1,B2,B3,B4}, DOM(C) = {C1,C2}, and DOM(D) = {D1,D2}. An instance showing the

many-to-one relationship is shown in Figure 5.

If a relation R(X,Y) has more than one FD associated with it, then one of the FDs must have

a scope of (X,Y), and the additional FDs Z — W are of the form Z C X and W C Y [26]. This

53

ot et v e A

- R} fal 3 9.0 a8 $ok Vol 5ol & \/ ., Salh Y, & Ao “ale 2l OYTNTYTY o Ava A¥ » 3
X
o)
.:".
o
1
e R(A,B) | S(C,D) | T(A,B.C.D)
i A1BlI | C1D1 | A1B1C1D1
. A1B2 | C1 D2 | A1 B2C1 D2
o~ - A1 B3 | C2D1 | A1 B3C2D1
o Al B4 Al B4 Cl1 D1
" A2 BI A2 B1C1 D2
A A3 Bl A3 B1 C2 D1
. A4 Bl A4 Bl C1 DI
1P
.
-': Figure 5. Instance of Many-to-One Relationship between AB and CD
o
T(A,B,C.D)
v Al B1 C1 D1
‘ A1 B2 C1 D2
Al B3 C1 D1
; A1B4C1 DI
:4_ A2 B1C1 D2
E A3 B1 C2 D1
o A4 Bl C1 DI
-
N
" 3.’ Figure 6. Instance of Many-to-One Relationship between AB and CD, and A and C
o
o
LORN
- (. is due to the rearrangement procedures described in Section 4.2.3.2. To generate the instance in
N) this case, an instance is first constructed which shows the FD which has scope (X,Y). Then, the
\
T instance is modified for the other FDs in the following manner. “In every tuple where, for each
>
attribute A € Z, the A-value is equal to Al (that is, the first value in DOM(A)), for each attribute
- B € W ' e B-value is changed to Bl (that is, the first value in DOM(B))”[26, page 125]. For
;:: example, in the instance shown in Figure 5, the FD with scope (XY), i.e. AB — CD, is already
[
represented. Then, if the FD A — C also holds on this relation, the instance will be modified as
::: shown in Figure 6.
:i
3 In the modified instance, only the third tuple needed to be changed. This is because the
8,
/]
_\‘ A-value was Al so the C-value which was C2, had to be changed to C1. All other tuples with
T
.-: A-value = Al already had a C-value = C1.
3
-,
3
-ﬁﬁ
COEEA N
-.\.': 54
-~
[~
.\
-
“
oy . . - - . o~ 4 - P kT S T
O R A L Iy R Sty S SN, e AT o WV

rvmmmmwmwmmmm““wvgvmmmm AT R RTROATRESORSRTRTE T ."H-V‘I

Construction of Instances with Combined Relationships

“An instance T(X,Y,Z) showing a combined relationship is constructed from the relations
R(X,Y) and-S(Z). We construct R(X,Y) by adding to an instance with a many-to-many relationship
between X and Y a tuple obtained by concatenating the last tuples of P(X) and Q(Y) which are
the relations corresponding to X and Y. If |[X| = 1, then P(X) is the unary relation constructed
from the domain of the attribute in X. If | X| > 1, then P(X) is obtained by generating a relation
with a many-to-many relationship among the attributes in X. In the same way we obtain Q(Y) and
S(Z). Let p be |P(X)|, q be |Q(Y)], and s be |S(Z)|. We must havep > 3,q>3ands=p + q —

3."[26, page 126]

T(X,Y,Z) is created as follows [26, page 126]:

1. Concatenate the first tuple of R(X,Y) with the first tuple of S(Z).

2. Concatenate tuples 2, 3, ...,q—1 of R(X,Y) with tuples 2, 4, ..., s—1 of S(Z)
respectively.

3. If there exists an MVD Z——Y in the ZCOVER. concatenate tuple q of R(X,Y)
with tuple 1 of S(Z).

4. Concatenate tuples g+1, g+2, ..., q+p-2 of R(X,Y) with tuples 3, 5, ..., s of S(Z)
respectively.

5. If there exists an MVD Z——X in the ZCOVER, concatenate tuple p+g-1 of
R(X,Y) with tuple 1 of S(Z).

6. If there exist MVDs Z——X and Z——Y in the ZCOVER, concatenate the last
tuple of R(X,Y) with tuple 1 of $(Z).
For example, let the FD AB — C and the MVDs C —— A and C —— B hold on the relation
T(A,3,C). Additionally, let DOM(A) = {A1,A2,A3}, DOM(B) = {B1,B2,B3}, and DOM(C) =
{C1,C2,C3}. Then, a combined relationship exists among attributes A,B, and C. Construction of

an instance of T(A,B,C) showing this relationship is shown in Figure 7.

4.2.3.6 Compute Join of Relations and Display to User. As shown in the driver for
the Armstrong relation function (see Section 4.2.3), after an instance of each relation is generated,
the instances are joined on equal attributes (that is, the natural join of the relations is computed)

to create the instance of the Armstrong relation. An example of this join operation is shown in

55

- m_m m a

(PO U I LR TURTR) 808 4% "By’ . W\WWWW\WW\TWW\“‘““M“MMWW\“
N TR < N r

" S(A,.B) [R(C) [T(A,B.C)
AlBl | Cl [AlBICI
. A1B2 | C2 |A1B2C2

) A1B3 | C3 | A1B3Cl1
: A2 Bl A2B1C3
A3 Bl A3 B1Cl1
" A3 B3 A3 B3 C1

Figure 7. Instance with Combined Relationship between ABC

e Section 4.2.3.7. After the instance is complete, the final step in this process is to display the results

to the nser.

"

]

Q 4.2.8.7 Ezample of Entire Construction Process. The following example, which is
b

bl based on an example presented in [26], shows the entire process required to generate an instance
‘ of an Armstrong relation.

Y INPUT:

- J.““ UNIVERSAL RELATION:

R(A,B,C,D\E,F)
FDs and MVDs which hold on the UNIVERSAL RELATION:
A—B

A—CD

—r

A —— EF

M .A"f AP

AC—~D

E—-F

-
3

%
X%

E — ABCD

o

s

¢

e,

R

o
-

i
W

L]
L 56

P e P

-

¥

P ol

* P W

Pl

L ". -..‘

TS

AN

[T IR T ¥ g
AN Tl ‘.l'\‘. .

Step 1. Decomposition:

Decomposition of the universal relation is done using the algorithm described in Section

4.2.3.1. The algorithm yields the following output.

ACOVER ZCOVER
1. RAB) 1 A—B
2. R(A,C,D) 2. AC—D
3. R(EF) 3. E—F
4. R(A,E)

Step 2. Rearrangement:

Relations 1, 2, and 3 of the ACOVER contain many-to-one relationships as shown by the
corresponding FDs in the ZCOVER. Relation 4 contains a many-to-many relationship since there
is no FD associated with it in the ZCOVER. There is no rearrangement necessary for relations with
many-to-many relationships, therefore relation 4 does not need to be modified. However, the rear-
rangement procedures described in Section 4.2.3.2 for many-to-one relationships must be applied.
Since none of the FDs in the ZCOVER have the same LHS, the first step of the rearrangement
procedure does not apply. That is, there are no equivalent keys to merge. The second step of the
procedure will discover that the ZCOVER contains the FDs AC — D and A — B. Then, since A
C AC, the relation R[AC, (D U B)), i.e., R(A,B,C,D), is added to the ACOVER, the associated
FDs AC — D and A — B are added to the ZCOVER, and the relations R(A,B) and R(A,C,D) are
deleted from the ACOVER. This rearrangement step ensures that all attributes determined by a
particular set of attributes, in this case attribute A, are in a single relation. The rearrangement

procedures yield the following output.

57

- Iy - W I N T W T et = ") . - T T LS . | v ’.‘. [" WA PR AR A N o q." [
) 1 LYy " LR Lh, \’F T4 . .(. "-(\f W J'\-‘% N. (\'{- A \ . 9% Yu¥ Vet > Y ‘ "\ AT ‘ N " ‘- g0 N 0! \

w "

Sa AV AVe 0Fa ROl Bl LAt . |

\
15' .%3 . -
o Attribute | Domain Size | Domain Elements
q A 4 Al,A2,A3,A4
R, B 2 B1,B2
;.“ C 4 C1,C2,C3,C4
e D 2 D1,D2
a E 3 E1,E2,E3
o F 2 F1,F2
;? Figure 8. Domain Sizes and Domain Elements
h
‘
"i
ot ACOVER ZCOVER
1. R(A,B,C,D) 1. AC— BD
Ny
L
¢ 1- A — B
n
e 3. R(E,F) 3.3 E—F
) 4. R(AE)
s
M
5:; Step 3 and Step 4. Compute Domain Sizes and Store Attributes in Unary Relations:
- C; - The minimum domain size for each attribute is computed using the algorithm shown in Sec-
*‘i. -
-, tion 4.2.3.3, and then the domain elements are created and stored in a unary relation corresponding
<
:\..: to each attribute. The output of these procedures is shown in Figure 8.
. ,
\, Step 5. Construct Instances:
N
Step 5.1. Instance for Relation 1:
- Relation 1 contains two many-to-one relationships as represented by the corresponding FDs
D
'g‘ in the ZCOVER. The instance for this relation, shown in Figure 9 is generated by the algorithm
Qe
::: described in Section 4.2.3.5 for many-to-one relationships.
2
§
j
Y
Y
Ry
¥ 58
319
[\
‘..

P . - - . - .~ - .
Wy iy ~ T e T T o W W 2y n g oo « 4 T Vet
) At R T L A S S L A0 TR ZN AN Y R TN TV LR YAV

'

i o
i
e
K
3
Yy .
[e A
Y >
Iy ¥y T(A,C,B,D)
. Al C1 B1 D2
i A1 C2 B1 D1
s - A1 C3 B1 D2
Yy Al C4 B1 D2
2 A2 Cl1 B1 DI
kD A3 C1 B2 D2
- A4 C1 Bl D2

\
.-] Figure 9. Instance of Relation 1
3
W

T3(E,F

E1Fi
3,-.- E2 F2
» E3 F1
[
“ Figure 10. Instance of Relation 3

Step 5.2. Instance of Relation 3:

This relation also contains a many-to-one relationship as represented by the corresponding
A4 FD in the ZCOVER. The instance for this relation, shown in Figure 10, is also generated by the

A algorithm described in Section 4.2.3.5 for many-to-one relationships.

'y Step 5.3. Instance of Relation 4:

' § This relation has a many-to-many relationship since there is no associated FD in the ZCOVER.
\ The instance for this relation, shown in Figure 11, is generated by the algorithm described in Sec-

.':.' tion 4.2.3.5 for many-to-many relationships.
\
\

Step 6. Compute Join: i

p Computing the join of T1, T3, and T4 on equal attributes produces the relation shown in

Figure 12. This is an instance of an Armstrong relation for the given input set.

SR

3 59

- g \ “a - ae Lt . ' 0. P R I L PR B P Tl SR s v e R A g .'_'.--\v 1.1"-.‘v\- \q..!
\‘.l'.\.J' "'0 . & ."'\"' b e s, o. Y ,r '(SO VIV LN %Y. W (O

T4{AE)
AT EI L
Al E2
Al E3
A2 El

A3 El
A4 El

Figure 11. Instance of Relation 4 r

T431(AB,C,D.E F)
Al Bl C1 D2 EI FI
Al Bl C1 D2 E2 F2
A1 B1C1 D2 E3FI1
Al Bl C2 D1 E1 F1
Al B1 C2 D1 E2 F2
A1 B1C2 D1 E3 F1
A1 BIC3D2El1F1
Al Bl C3 D2 E2 F2
Al B1 C3 D2 E3 F1
Al B1 C4 D2 E1 F1 u
Al B1 C4 D2 E2 F2 |
Al B1 C4 D2 E3 F1

A2 B1C1 D1 El1FI
A3B2Cl1 D2E1FI
A4 B1Cl1 D2EI1FI

Figure 12. Instance of an Armstrong Relation for Example Input

S,

60

e ae AL e - . - \'.» et "
iy - . Pad
PRT ISR LA LN RSN T S __.IJ. L L\."'L"‘ SRR S

Since all of the algorithms described throughout Section 4.2.3 are required to create an in-
stance of an Armstrong relation, they were selected for implementation in the toolbox to support
the Armstrong relation function. The last algorithm needed for the toolbox, an alternative design

algorithm, is discussed in the next section.

4-2.4 Alternative Logical Designs. A literature review was conducted to determine if any
algorithms had been published to automatically generate all possible alternative 3NF database
schemes for a given set of attributes and functional dependencies. Although the literature review
did not reveal any published algorithms, many authors have pointed out that alternative 3NF

schemes can be generated with the various decomposition algorithms by:

1. Varying the order of the attributes on the LHS of FDs prior to the left reduction procedure
described above [3]. This can result in different designs since the RHS may be functionally
dependent on two different sets of attributes. For example, if the set of FDs given to hold on

a database were:

AB-D

A—-C

C—-D o
B—E

E—-D

then, both A — D and B — D are implied. Thus, if A is removed from the LHSof AB — D
first, then since B functionally determines D, A will be considered extraneous and therefore
permanently removed from the LHS leaving B — D. However, if B is removed from the LHS
first, since A — D, B will be permanently removed from the LHS leaving A — D. Since each
FD will ultimately be incorporated into a separate scheme, the order in which attributes are

removed from the LHS of FDs can potentially effect the final database design.

61

. R S N SR SR T ICINE R C j
A e Y e A e T A T A T AT A A T AT s .‘..u':.A’Ln}.n}.nd\iﬁ'

ia 8% " A" 2% A Ra A Ra AR Shi

::' @ 2. Varying the order of the FDs which hold on the database attributes prior to removing re-
.]
'a

dundant FDs can also effect the final design. Different orders of FDs have the potential to
V9,
: generate different database designs for a similar reason to that of varying the order of the
0
) LHS attributes described above. That is, removing certain FDs first can effect whether or
W

not other FDs are subsequently removed (3].
!‘
, -
: Thus, one approach to generating alternative database schemes could be based on varying
the order of the LHS attributes and varying the order of the given FDs, such as in the following

algorithm.
’
" INPUT: Set of universal attributes and a set F of FDs which hold over those attributes.
4 OUTPUT: Set of alternative 3NF schemes.
o n; = number of attributes on the LHS of each FD where i equals
4 1 to m and m is the number of FDs in the input set.
, begin
i 1 Step 1: Compute the minimal cover of the input set of FDs;
« 2 Step 2: Compute the closure of each LHS;
v 3 Step 3: Right reduce the FDs;
! M Step 4: /* comment: generate designs */
(! 4 Fori=1ltom

. ’ begin
‘ 5 For each different order of the LHS attributes of F D
! begin
.' 6 For each different order of the FDs in F
K begin
_ 7 Compute 3NF schemes;
W) end
- end
Wy end

, end
.

' |
oy |
W The first step of the algorithm is required to reduce redundancy in the FDs which cannot |
» |

effect alternative designs. For example, the step will remove trivial dependencies and extraneous i
attributes from the LHS of FDs which, if not removed at the beginning of the algorithm, must be

removed each time the 3NF algorithm is executed.

Then, Steps 2 and 3 are required because the INF design algorithm uses a minimal cover

1
algorithm which always produces a minimal cover that is a subset of the input set of FDs [3]. Thus,

] -

AN,

“ WA
> 62
K-

\
DY

N . ym . B T U T VL U L L N g AR N N N
N S T o 0 o O (PR PRTEPG PG IV P P, P o e o A AN S o

- w
ety

" .-

o -
-

%

AR R F Y

N'f‘\
o

U RU T URUS WY URUNUN LW W,

the 3NF designs will always be based on subsets of the input set of FDs unless the the algorithm
first expands the set of FDs to the set of all FDs logically implied by F which have the potential to
effect altern_ative designs. The algorithm could compute the closure of the set of FDs, that is, the
set of all FDs logically implied by F by applying the following rules which are known as Armstrong’s
axioms [16]:

o Reflexivity rule. If X is a set of attributes and Y C X, then X — Y holds.

o Augmentation rule. If X — Y holds and W is a set of attributes, then WX — WY
holds.

e Transitivity rule. If X — Y holds, and Y — Z holds, then X — Z holds.

However, computing the closure is not necessary because it generates many FDs which will
not effect the final schemes. For example, all of the FDs generated by the reflexivity rule are trivial
FDs since the RHS is a subset of the LHS, and thus these FDs will always be removed from F
by the minimal cover algorithm when it deletes redundant FDs. Thus, these FDs will never effect
the final scheme. Therefore, Step 2, using the attribute closure algorithm defined in Section 4.2.2,
will compute all the FDs implied by the LHS attributes of each FD using the augmentation and
transitivity rules, and will thus be sufficient to generate all FDs logically implied by F which have

the potential to generate different alternative database schemes.

Step 4 generates the schemes; however, this part of the algorithm has the potential to be
prohibitively time consuming. That is, the number of designs generated will become quite large
as the number of FDs increases and the number of attributes on the LHS of each FD increases.
Specifically, the execution time of line € is directly related to m! since there are m! possible orders
of m FDs, and the execution time of line 5 is directly related to n;! since there are n;! possible
orders of n; attributes in the LHS. Then, since line 6 is inside a loop controlled by line 5, which will
be executed n;! times, the two loops will execute a number of times on the order of (3"/2, ni!)m!.
The execution time of an algorithm which performs a factorial x factorial number of operations
will increase very rapidly as the input sets grow larger. For example, if the input set consists of 3

FDs where each LHS of the FDs contains 3 attributes, the loops would execute 3! x 3! = 36. But,

63

s At h'a Ate AN

- -
s A.l:_L,-L-A. -

A AN

2
‘.'"J?]‘

!‘. i LI | - LT Rl T 34 R P pd q'~)-’- 'J‘-J‘".-(- - -u‘-f_'nf"ﬂ"
'I"-'o'.‘n"x‘.l’.l AP U T N v Wh 1Y, by, Wierh AR, .

if the input set consists of 6 FDs where each LHS contains 6 attributes, the loops would execute 6!

x 6! = 518,400 times. Then, likewise, 7! x 7! = 25,401,600 times. Obviously, as n and m increase,
the algorithm will generate an extremely large number of database designs and could potentially
take a significant amount of time to finish. Another problem which must be considered is that
many of the designs generated would be identical since varying the orders of the LHS attributes
and the FDs will only produce different designs in some cases. Therefore, much of tue excessive

time and space requirements of the algorithm would be wasteful.

Due to the problems with this approach, it was obvious that the number of database designs
generated must be reduced. Since many of the designs generated would be identical, one way to
reduce the number of database designs would be to never generate the identical schemes. This
approach requires that the algorithm include some type of “rules”, i.e. heuristics, so that only the
orders of FDs and LHS attributes which will cause different designs are tried. Thus, in order to
determine what the “rules” for the algorithm must be, the toolbox had to include a function which

could support the research in this area.

Since the generation of alternative designs is based on varying the order of LHS attributes
and FDs, the toolbox function needed to allow the user to vary these factors so the resulting effects
on the designs could be analyzed. However, since the number of attributes on the LHS of an FD
will typically be small (e.g., 1-3), the majority of different designs will most likely be a resuit of
varying the order of the FDs rather than the LHS attributes. Thus, the toolbox was designed so
that the 3NF design function includes an alternative design option which allows the user to vary
the order of the FDs to study the effect on the final design. The function is designed so it can
later be enhanced so the user can vary the LHS attributes. Once the heuristics are determined,
they could either be incorporated into an algorithm which automatically generates all alternative
designs, or incorporated into an interactive user interface which provides the user with guidance

on ways to generate other designs.

64

q

- Y
J‘\-‘\J‘\-

:.-'.';.r_'.-_'.' ‘.';.r:‘.* s
. NN :

i L X

RO

of o

-
Lt Wt

. PN Rt i >0,

”-‘

. € - ‘. ¥ « - ERST I SR I I oS N T R SR o PR AU D T T TR TR P L, .'_‘
AN f-.'\a‘\'\'-,‘ 1-\." "‘d‘\-..'.'-\._.. b A A I e A S T S A T, VLV PR S TN

"
\e

The BCNF/4NF design algorithm used in the toolbox can also be used to generate alternative
designs; however, the algorithm generates database schemes based on MVDs rather than FDs as in
the 3NF algorithm. Thus, the heuristics for an algorithm to generate alternative BCNF and 4NF
schemes will most likely be different than those for alternative 3NF designs, and therefore, research

should be conducted to determine the heuristics for both of these cases.

4.8 Data Structures and Files

4.3.1 Data Structures. The first step in selecting the data structures for the toolbox was
to analyze the algorithms to determine the type of operations done most often. Then, based on
those operations, determine the type of data structures which could support those operations most
efficiently. For example, if the algorithms frequently perform searches, an efficient data structure
would be a binary search tree since “a binary search tree provides the flexibility of a linked list
and allows quicker access to any node than a linked list”[23]. However, if the algorithms typically
look at every item in a list, then every node must be visited and therefore a binary search tree

would provide no advantage over a linked list structure, and thus the overhead of building and

maintaining the search tree would be wasteful.

Analysis of the algorithms selected for implementation in the toolbox revealed that, in general,
the algorithms frequently must step through every dependency to accomplish their specific function.
For example, the algorithm which generates the minimal cover of a set of MVDs must step through
every dependency to eliminate trivial dependencies, right reduce, left reduce, and then eliminate
redundant dependencies. The algorithm to compute the envelope set of a set of FDs and MVDs
also must step through each dependency. Additionally, many of the algorithms which support the
Armstrong relation function also examine every dependency. Another type of operation that occurs

frequently in the algorithms is insertion and deletion of dependencies in lists of dependencies.

65

r

_.-'\-'.. (

The analysis of algorithms also revealed that sorting the dependencies and searching for

a specific dependency do not occur frequently. However, the membership algorithm performs
operations which require quick access to specific dependencies, and the Armstrong relation function

requires unique data structures for storage of relations.

Thus, it was determined that the universal attributes, the FDs, and the MVDs should be
stored in linked list structures so algorithms could easily step through each one. Although array
structures were considered, they were not selected for storing the FDs, MVDs, and attributes be-
cause the size of the input sets will be dynamic and linked lists are better suited for operations which
require dynamic memory allocation. Additionally, linked lists are better structures for frequent in-
sertion and deletion operations, and are therefore a better choice of data structures than arrays
for the required operations. Since the membership algorithm and the Armstrong relation function
require unique data structures, the structures for these functions can be built from attribute and

dependency data stored in the linked lists.

For the membership algorithm, it is critical that the data structures support quick access to
specific dependencies. The general data structures needed to support the algorithm are defined in
[3). Since this algorithm will be used extensively in the toolbox, it is critical that it executes fast.
Therefore, the data structures used by the algorithm should mainly be arrays so the algorithm can
use indexing to directly access specific items. Linked lists or trees would require searching, so the

algorithm would take longer to access specific items.

For the Armstrong relation function, a linked list structure is best suited for storage of the
relations. This is because most of the operations on the relation list involve stepping through each
relation, inserting relations in the list, and deleting relations from the list. Each relation structure
will contain a pointer to a list of tuples. The Armstrong relation function performs many operations

on tuples such as concatenating tuples and joining tuples on equal fields which require that the

66

S

«¥a

. . - et et s B I SR NI -
m{a;.{l: \‘M{:&f:{;&:ﬁ{&ﬁfxflt‘:;f:f l:\-zh';_'.' :‘ e e AN gk e te e iantaaa - '-,‘A'}A‘:"}t\l";; ar A A

A N PR |
PR TR AT

)
".'
b
L)

%

.
I

Zol el

. yg' tg*

 ggb gat gt

program know exactly where to find the value of each attribute in the tuple. Therefore, each tuple

is stored as an array so the function can index directly to each attribute value.

4.3.2 Files

4.3.2.1 Input Files. Asstated in Chapter IlII, one of the long range objectives of the
toolbox is to serve as a normalization tool in a suite of stand-alone database design tcols developed
at AFIT. Therefore, the file formats used by the toolbox must be designed to provide a standard

interface so database attributes and constraints can be passed between all tools.

The method chosen to accomplish this objective was to define the format for text files which
will be input into the toolbox. Then, if a tool such as an ER diagramming tool wants to “interface”
with the toolbox, it would simply have to store its output in a text file in the proper format so the
toolbox could read it. If the ER diagramming tool only stored a set of universal attributes in the

file, then the user could add constraints (dependencies) to the file through file update functions in

the toolbox.

The specific format of the input files used by the toolbox was originally defined in [17]. The
file format was adopted for use in the toolbox for several reasons. For one thing, the format is
easy to read and understand. Additionally, [17] had already defined the grammar and syntax of
the input files for the UNIX lex and yacc functions. The lez function, or lexical scanner. is used
to verify the grammar of the input file and find tokens for the syntax parser yacc. Yacc is used to
verify the syntax of the input files, notify the user of errors in the input file, and store the universal
attributes, FDs, and MVDs in linked list structures. Thus, the file format from [17] was adopted,
and the parser (yacc) is used to identify format errors when files are created, updated, or files are

named as input files for a toolbox function. Examples of the file format are shown in Appendix D.

4.3.2.2 Output Files. The output of the INF, 4ANF, BCNF, and Arinstrong relation

functions are displayed on the screen and are also written to files for later reference. To help the

67

T T AT NN AT e .‘. CO R SN ,,'-'._- ' .\-.\- \-‘\! ER _" R
(5 [L) e . - -

-

user identify these files, the system names them by using the input filename plus one of the following

extensions: 3NF, 4NF, BCNF, arm, respectively. Examples of the formats and sample output are

shown in Appendix D.

4.4 User Interface

The user interface was designed for the target user defined in Chapter IIl. That is, the
interface is designed for users who are familiar with dependency theory and normalization concepts.
Therefore, the interface frequently uses technical terms which assume a working knowledge of

dependency theory.

Since user interface issues were not central to the goals of this thesis, a simple menu system
was adopted. The interface is designed so the user will need minimal assistance from the user’s
manual to operate the system. The menus present all available options at each level, and they
allow the user to return to the previous menu. The menus provide the system with a structured
interface so the user always knows what the options are, and how to get back to the main menu.

User interface issues were not central to the goals of this thesis, therefore, a simple menu system

was adopted.

Keyboard input was the only practical choice for data input capability since the users will be

working from a wide variety of terminal types, with varying input capability.

o
2oy
A
s
68
\
v, AT St LT R SN e N .'.‘I_'-" e T e Te e T -.'.'.'.
‘{Q'L": .A:{\.N‘{'[:(C\:{N'TJL'-:.'TA.‘:L‘: u’CL':!.‘:A.{,s':\'.’A_{x_'..:_'\':'{'A-'. N ot in s e N e e s N e e

-

P s s e

1 4

o tn 2P Lt W
* . 5 " ol

o«

V. Coding and Implementation

5.1 Hardware Configuration

The toolbox was developed and implemented on the ICC (Interim Computer Capability) at
AFIT for two critical reasons. First, since the toolbox will be used primarily as a teaching aid
and a research tool at AFIT, the program can be utilized by more users if installed on one of the
school’s centralized computer systems. Second, since the toolbox includes many algorithms which
have a time complexity which is related to the size of the input set of universal attributes and
dependencies, the program needed to be implemented on the centralized system which executes the

most instructions per second. Therefore, the ICC was best suited for this application.

5.2 Language Selection

The toolbox was written in the C programming language for several reasons. First, C is well
suited for this type of application because it compiles into efficient executable code. Efficiency is
an important characteristic for the toolbox since the execution time of most of the algorithms is a
function of the number of attributes and dependencies in the input file, and thus, the algorithms
could potentially require relatively long execution times. Additionally, C code can easily te moved
to and crmpiled on other AFIT systems. For example, the toolbox modules can be transferred to the
ASC (Academic Support Computer) and the SSC (Scientific Support Computer) in the exact same
form as they are on the ICC. Also, the code can be run on the LSI-11’s with minor modifications
Finally, C was chosen because two readily available database design tools [17,19] were written in C,
and therefore, some of the routines and algorithms from those tools could be directly incorporated
into the toolbox if the toolbox was written in C. Using C as the programming language, therefore,
had the potential to reduce development time by several months. Thus, based on the above reasons,

C offered many benefits, and was therefore chosen as the programming language.

69

~

" A A, P R I T T T T S N A P P P P AN ALY

=

o

L T

” ._‘-'. *

MUY Y FENENI NI AV FI AT A I M T WA TN R UM T ENEIT T ER U A AINUOARA A AAROCWMARARARINSTRKARMAERL R RUI VN RV AT T "I W "I s "N T "1

5.3 Coding

The software for the toolbox was written in a top-down, structured fashion. That is, the top
level modules were written first, with lower level functions stubbed out. Then, as development
progressed, each of the progressively lower level functions were completed, and then finally the
lowest level functions were completed. The program modules were organized into files based on
function. For example, the algorithms required to support the Armstrong relation function are in
one file, the algorithms required to support the 4NF/BCNF functions are in a separate file, the

code which drives the menus and the function interfaces is in another, etc. Organizing the modules

into files based on function will enhance the maintainability of the toolbox software.

1 . ’;

M et AT TR AT P . . - P R N . R
e A A e e N N e s Lt e et e N NN

'y

¢)]

NI N .

N ' VI. Acceptance Testing

wi‘

"t: This chapter documents the testing phase of the toolbox development.

g

h

U

' 6.1 Scope of Testing
:‘ The main objectives of the testing phase focused on the following main software engineering
h

$ concepts:

N
o e verification - verify that the product is built right based upon requirements.
R
: o validation - validate that the code does what the user wants. That is, ensure we built the
¥
v right product.
!

> Thus, the testing approach was based on the following specific objectives:

:'_f

b "" 1. Ensure all toolbox functions produce accurate results.

-5 2. Ensure the toolbox satisfies user needs.

¢

&

' 6.2 Test Plan

3 Based on the specific test objectives, testing was divided into the following two phases:

~

A Phase I Function Accuracy.

*'

‘: Phase II Operational Needs.

v

. Ll

_;. For the first testing phase, the test objectives could be met by creating specific test cases
z which bad a given input and a known output, and then comparing the output from each function
¢

! to the expected output. The input for the test cases had to be designed to represent a wide variety
v

:: of possible cases. Thus, a test procedure was set up for each toolbox function with the required
@

SR

.','_.r,‘
'

71

W

! - : A TR LS
] e} i \ | Ve [» -

AR TINTIATIOCN QORI Mo NI o o "ot b

n v .
ARGV

= o -
PR " -

- ;e o W -

-

Pl

- - o o Py o

’...-’

Y

nr A
AAANGOGY,

O st

input and expected output specified for each test case. Each test procedure is documented in

Appendix D.

For the second testing phase, the testing criteria were not as clear cut as for the first phase.
That is, for the second phase, there were no clear lines between correct results versus incorrect
results. Thus, the approach taken to test whether operational needs were satisfied focused on
whether the toolbox accomplished the specific tasks specified in the user requirements documented
in Chapter III. And also, focused on an analysis of whether or not the toolbox had the potential to
accomplish the more broad tasks required by the user (i.e., serving as a research tool and a teaching
aid).

The results of the tests required for the first testing phase, and the analysis required for the

second testing phase are presented in Section 6.4.

6.8 Test Procedures

Each toolbox function was tested by inputting given input data into the function, and then

comparing the actual toolbox output to the expected output. The input and expected output for

each test are described in Appendix D.

6.4 Test Resulls

6.4.1 Results of Phase I. The actual output of the toolbox matched the expected output

for each of the test cases defined in Appendix D. Thus, the toolbox satisfies the test criteria for

Phase I of the testing phase.

6.4.2 Results of Phase II. An analysis indicated that the toolbox provides all the functions
specified in the user requirements. Therefore, the toolbox meets the operational needs of the user
from the perspective that it provides the functions necessary to accomplish the tasks which were

defined in the requirements. Additionally, analysis showed that the toolbox has the potential to

72

#"g o -f‘.‘I"".«"f r ‘ 'l\'h’\'-{‘-{) " 4 ' LS ‘f T W ‘n (-

g X WOTNTYO FECPOTOR TOF O TR TORPOU RN o At e 8 200 3.0 008°0.0" 00 0l 2l AR R A Ta A s A e b ad Al A R'a At b Bl A Ak A A A Ak el

mmmmmmﬂhmmmmv\mmmmmmmmmmwxm1~WWW|nu-n AP L

! % accomplish the broader tasks defined in the requirements (i.e., serving as a research tool and a

teaching aid).

The toolbox can be used as a research tool in several ways. For example, the user can vary

the database specifications which are input into the various toolbox functions and study the impact
on the function output. Also, the toolbox provides a very good capability for the user to study and
research alternative logical designs since the 3NF design function allows the user to vary the order
of the FDs, and thereby create alternative 3NF designs. The BCNF and 4NF design functions also
allow the user to study alternative designs by letting the user change the order of the keys for the
schemes, thereby creating alternative designs. Thus, the user could analyze which order changes
actually create different designs. The effectiveness of the toolbox as a research tool depends on
the objectives of the specific experiments done, and the design of the experiments, therefore, it is
difficult to generalize about effectiveness. The toolbox would have to be examined in each specific

situation to obtain specific results, however, the toolbox has potential to facilitate research in some

& areas.

The toolbox could also be used as a teaching aid in several ways. A student could study
the output of ‘ 1e toolbox to learn the functions of the various database design algorithms, and
to analy:e the results of varying the input. Additionally, the Armstrong relation function in the
toolbox could be used to teach students the concepts of functional dependency and multivalued
dependency. The effectiveness of the toolbox as a teaching aid would again depend on the specific

lesson plan, and the objectives of the lesson, and thus the toolbox would have to be examined in

=)

specific situations to obtain specific results.

Thus, the analysis indicates that the toolbox performs the functions required to fulfil] the
operational needs of the user; however, the actual effectiveness of the toolbox to serve as a research

tool and a teaching aid depends on many subjective factors which will depend on the specific

R R
v e o

o N
s s e

@- situation and purpose for which the toolbox is used. Therefore, based on the analysis, the toolbox

satisfies the test criteria for Phase II of the testing phase.

g |

o e T

T i
A
&

Fd

74

NI W X

.‘. !

GO0 e e S A S

1.00000,40,

W - - \ » '. o)
KRNI N A M N SO, X g W 3 M S, € o /

VII. Conclusions and Recommendations for Further Study

7.1 Conclusions

Designing a database is a very time consuming and complex set of activities. Although re-
searchers have investigated implementing computer tools to assist designers in all phases of database
design, a significant effort has been applied in the area of logical design. This is because the process
of logical design is well suited for computer assistance because the process can be time consuming,
repetitive, and it can be structured into a clearly defined set of steps. Additionally, computer
assistance is needed in this area because much of the current dependency theory used to design
and study the logical structures of relational databases exists in the form of published algorithms
and theorems, and hand simulating these algorithms can be a tedious and error prone chore. The
literature review included in this study revealed that even though many researchers have developed
computer tools to assist database designers with the logical design of relaticnal databases, there
are still many algorithms and functions which need to be incorporated into automated design tools.
Thus, the objective of this thesis investigation was to design and implement a computer tool which

automates some of these algorithms and functions.

The computer tool, or “Dependency Theory Toolbox”, was designed for use in an academic
environment as a teaching aid and research tool, rather than for practical application to database
design problems. The toolbox provides many functions which allow the user to generate and study
database designs, and is specifically designed to support research in the area of alternative database
desigis. Much research is still needed in this area to define methods for automatically generating all

alternative designs for a given set of universal attributes and FDs which hold over those attributes.

Many authors have pointed out that alternative INF schemes can be generated by varying the
order of the attributes on the LHS of FDs prior to left reducing the FDs, and by varying the order
of the FDs prior to removing redundant FDs. Thus, one approach to generating all alternative

database schemes could be based on varying the order of the LHS attributes and varyving the ordet

75

» L w,. SIS TS IS PO AT T TP, RN SN

TN A
AYX) B

W A Sl g W TGN TR T DR TR W R

R I)

RN T T TR NI IRV VLW PUV WY Ve, VUW WU WY WYY W WYL T WU 7 RS s e e

of the given FDs. However, such an approach has the potential to generate a very large number of
database designs since generating every possible order of n elements results in n! orders. So, the
number of orders, and thus, the number of designs, would increase very rapidly as the number of
attributes and FDs increases. Another problem with this approach is that many of the schemes
generated by this method would be identical since varying the orders of the LHS attributes and
the FDs will only produce different designs in some cases. Thus, in order for this approach to be
practical, a design algorithm based on this method must include some type of “rules”, i.e. heuristics,
so that only the orders of FDs and LHS attributes which will cause different designs are vsed as
input. The toolbox was specifically designed to support research in this area by allowing the user to

vary the order of FDs so the resulting effects can be studied. The 4NF and BCNF design functions

also have similar functions.

The result of this thesis investigation was that the “Dependency Theory Toolbox” was suc-
cessfully implemented, documented, and tested. The toolbox provides all the functions specified
in the requirements analysis, with the limitation that it does not generate all alternative logical

designs automatically. The toolbox does, however, include a function which allows the user to

generate alternative designs manually by varying the order of FDs input into the 3NF function,

and by varying the order of keys input into the BCNF and 4NF functions.

In conclusion, we see that even though a significant amount of effort has been invested in
studying the logical structures of relational databases, and in developing automated database design

aids, this area of database design still warrants further analysis and study.

7.2 Recommendations for Further Study

Although many database design algorithms were implemented in the “Dependency Theor,
Toolbox™, there are still many other algorithms and functions which need to be incorporated into

automated design tools. For example, the toolbox could be expanded to include algorithms which

76

“ . - Y - A ‘\n w ~_.'-_.
. ..!'J..A.f f-t‘m;&. AA(L(JJJM{L(LMM&&LM&MM'

-

P

\ &}, determine if database schemes are dependency preserving, and if schemes can be joined without

losing information (i.e, check for a lossless join).

Additionally, research should be done to define the heuristics needed to determine which
orders of LHS attributes and FDs will cause different designs to be generated by the 3NF algorithm.
, The research in this area could ultimately lead to better database designs since a database designer

could readily see all the available options, and thus choose the design best suited for the particular

application.

; -?\
NN

77

e \ » \-\.’\.'" Ay G '\ RO SN N SR)

\1 %O \1,1\4\ .'-. .wr o r_‘.

My
i
B . e
K -ﬁ;} Appendix A. User’s/Maintenance Manual
Q. ’
‘:i A.1 Introduction
A
i -
;' This User’s/Maintenance Manual documents the capabilities incorporated in the Dependency
)
1
U
‘ Theory Toolbox, and explains how to use the functions provided. In general, the function of the
' toolbox is to assist the user with designing and studying the logical structures of relational databases
i) . .
N and various related concepts of dependency theory. The system is intended for use in an academic
N
b
environment as a teaching aid and research tool rather than for practical application to database
: design problems. However, the tool could be used to design small relational databases which have
ke a limited number of attributes.
L L . .
- In order to use the functions in the toolbox, the user must first create an input file which con-
)
tains database specifications. The toolbox allows the user to input database constraints (functional
- dependencies and multivalued dependencies) and database attributes interactively or to specify
:‘ existing user files which contain the information. The user files can be created using the toolbox,
\ or can be generated by other design tools in the prescribed format (defined below). The system is
! designed to accept existing files so that this toolbox can be used in conjunction with other database
< design tools developed at AFIT. For example, if the Entity-Relationship diagramming tool which
was developed at AFIT, stored the entities and attributes which were specified in the diagram in
o
) text files with the same format, the data files could be directly input into the toolbox.
R A.2 Toolbor Location
2
I\
'.| The toolbox was developed and implemented on the ICC (Interim Computer Capability) at
\
.
'
AFIT. The ICC is an Elxsi 6400 computer. The toolbox is written in the C programming language,
v and was implemented under the UNIX operating system, version 4.2BSD. Currently, the executable
h Al
. code is sto:~d on the SSC under the path name:
)
L
-~ - /course/course/ee646/dbtoolbox /dbtoolbox
. PR
'R
. 78
l|
Y
)
»
I\
i\

RIS TR O N S N T LT M SR N S G R I I e T I %) u e
n.“o ARSI |!.‘._I‘.'t‘|‘l. LY L% A MU S o TN N (PP -"vt“'-'-' &)'_ PRIy o ‘_ Y

\

2 2td 2 2 ath ath ot TR TS T “ aa'sda¥ a0 at Saf 820 528 F2t B28 2.0 Aa® 828 F.8'Bud 2.0 0l’ (VY |/ A Al Aia gty ptg B¢ D 0

v,
¥
i
'
.
X %} A.83 Compiling and Linking
[y
W If the source code must be moved to a new directory, the information which defines all required
0
Y
:" files and system modules is documented at the beginning of file /course/course/ee646/dbtoolbox/main.c.
o
)
::‘: The file header at the beginning of this file describes all files required to build the toolbox, and
ot how to compile and link them.
RN
R
:. The toolbox can be moved to other centralized AFIT systems which operate under the UNIX
Sy,
o operating system. The source files can be moved by using the UNIX ‘rcp’ command, and then
:i:' the executable program can be generated by compiling and linking the source code with the ‘cc’
)
N command.
W
;1: The file named “makefile”, which is included with the source code files on the SSC in directory
: [course/course/ee646 /dbtoolbox, contains all the specifications necessary to compile and link all
*\
¥l
< toolbox mndules using the “make” UNIX command. The contents of “makefile” are shown in
' (_t. Figure 13. The makefile defines all modules required to compile and link the toolbox, and shows
@
s ‘“' which modules depend on the contents of other modules. For example, the file shows that main.o
PLs
A ',: depends on the contents of header.h and global, and therefore, if these modules are changed, main.c
::" must be recompiled to update main.o. This update, and any others, will automatically take place
N when header.h and global are changed by simply typing “make” at the UNIX prompt. Additionally,
"
R the makefile shows the UNIX commands required to compile each module.
e
-y A.{ Start-up Procedure
&
::; To start the toolbox, type the following path name from a directory on the SSC where you
4
\l
' want the output files to be stored.
.r
v /course/course/ee646/dbtoolbox/dbtoolbox
v
q
N

Caianl

Gﬁ%&

~
\l
'.h
[
;j toolbox: main.o lex.yy.o y.tab.o utilityl.o utility2.o utility3.o 2d_alg.o
' BCNF_4BF_alg.o arm_rel.o
N, cc -g main.o lex.yy.o y.tab.o utilityl.o utility2.o utility3.o
fd_alg.o BCNF_4NF_alg.o arm_rel.o ~11 -o toolbox

: main.o: main.c header.h global

' cc -c -g main.c
"~ y.tab.h: yac
{~ yacc -d yac
y-tab.c: yac

yacc yac

L lex.yy.c: 1le y.tab.h
{ lex le
4 lex.yy.o: 1lex.yy.c y.tab.h header.h
b cc -¢ -g lex.yy.c

y.tab.o: y.tab.c header.h
€cc =¢ -g y.tab.c
utilityi.o: wutilityi.c header.h
cc -c -g utilityl.c
utility2.0: utility2.c header.h

ok

"l

N cc -c¢ -g utility2.c
a utility3.o: utility3.c header.h
e cc -c -g utility3.c
fd_alg.o: fd_alg.c header.h
o, ¢c -c -g fd_alg.c
. BCENF_4NF_alg.o: BCNF_4NF_alg.c header.h global
! cc -c -g BCEF_4FNF_alg.c
.? arm_rel.o: arm_rel.c header.h
A €Cc ~c -g arm_rel.c
b .
.‘: Figure 13. Toolbox Makefile
b
|
B
"
L
¥
-
<M
I
p: e
B 80
5' !
(!'
]
.‘]

\ ' NN Y g I I I T R T S i 1R L S GG AL O N A AL
IR NI OO M A AN O e 0. P i EA A O o e Cras -V V. Py, oo

If the path name /course/course/ee646/dbtoolboz is in your path in your .login file, then the toolbox

can be executed by simply typing dbtoolbor followed by a carriage return (denoted by -CR- in the
rest of this manual). After you have typed “dbtoolbox -CR-", the system will display a welcome

banner and tell you to press return when you want to continue.

After you type return, the system will display the main menu which contains the following

options:
Main Menu

1. Create or Update Database Specification File
2. Generate Logical Structures
3. Accomplish Utility Functions

4. Exit Toolbox

This menu, like all other system menus, will be followed by the message:
Please type the number of your choice

In response to this message, you should type a number listed on the menu and then -CR- If
you type a number which does not appear on the menu, the system will print an error message
and allow you to try again. Since all of the functions in the toolbox require an input file which
contains database specifications, the user should choose option 1 the first time the toolbox 1s used
This will allow him/her to create the required file. This is necessary because when the user chooses
option 2 or 3, the system will ask for the input file name before executing the requested function
The user may exit the system from the main menu or any of the menus below it The functions

which are provided through the main menu are described i the following sections

81

. . - Tt T Wt
2 G S T e e T e N N N T N el _-“.A'.A}_A'.u_.u\‘\‘i

Pl Sl S o A T o D VL S

n A.5 Overview of User Interface

1R

The user interface for the toolbox is menu driven. It is designed so the user will need minimal

B
, assistance from the user’s manual to operate the system. The menus present all available options at
A each level, and they allow the user to return to the previous menu. The menus provide the system
_'. with a structured interface so the user always knows what the options are, and how to get back to
:-‘ the main menu.
..
:‘; Additionally, the interface is designed for users who are familiar with the process of relational
. database design, and with dependency theory concepts related to database design. Each of the
;-: utility functions provides a short description of the function’s purpose prior to actually executing
?: the function. However, the user will find the toolbox much more useful if they review concepts
\' such as: minimal cover, attribute closure, envelope set, etc. either prior to using the toolbox or in
: conjunction with using the toolbox.
e
M
B (. A6 Mawn Funchions
Once the user types the number of an option on the main menu, the system executes the
appropriate function. Each function is described below.
o
'; A.6.1 Create or Update Database Specification File. This function allows the user to create
i
| '; or update an input file which contains a set of universal attributes and a set of functional depen-
’ dencies (FDs) and/or multivalued dependencies (MVDs). The subsections below describe how the
: options within this function allow the user to create files in the prescribed format. However. the
1 3 operation of all the functions follows the same basic format. First, the options request the name;«
s of the required file(s). Then, once the file is created or retrieved, the file is displayed and the user
can input and edit data using a full screen editor using UNIX vi editor commands After the o
is done editing a file, the toolbox will examine the file to ensure it 1s i the projer foee
: 15, the system will return to the “Create or Update Database Specificatiomn bub 1
aTN

R2

¥
‘\
o
&
»

-R4188 672 DEVELOPMENT OF A DEPENDENCY THE m TOOLBOX FOR DATABASE 2/2
DESIgN(U;TﬂlR FORCE INST OF TECH IBHT-PRTTERSON AFB

DEC 87 AFIT/GCS/ENG/87D-

A - ad'u e LN b0 a 9ig O e BT @'y ¢4y Mig dia 'L g 4t 4l Bt 00 0t
P gl ok B @eN Bu? 4.0 PR R R b4t w0ty eca By s, Pp g €p dy 0 e nisd'e by I3 5

DRI IR AL B ,
N [RLICTLIR FORE PR L W I SRR

X
ok igand Ly)

nf et

- ~e -
-——
'

o

. =

LEoE= R

22 s s

I

FFFEER[E

rrr

!

= 1
s e B NS

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

F 4

'
i
‘.

+
1

MAEEYN

"5

- "‘ - .'"
"".'s":"'r .,

O

s
L.,

LA
SYia b A

. daten., JNNNER. Jniie.
-‘\;‘.!a.::'

L]
wint }\":‘
A SN
Nalpigiiae:

RGO AC
vl OO SHE S I OISRt U

Wmmmmmmmmv.wmwwmmv Ao 2 AL S}

@ is not in the proper format, the toolbox will display the file contents and, in most cases, tell the
) user which line contains an error and what the error is. The system will then inform the user that
he may edit the file and try again, and will return the user to the “Create or Update Database

Specification” menu.

Some of the basic UNIX vi editor commands which can be used to create and edit input files

are listed in Figure 14.

o e amil A NN SNR B -

A.6.2 Input File Format. The input files must be created in the format shown in Figures 15
and 16. This format was originally defined in [17], and has been adapted for use in the toolbox.

The following specifications define the format more precisely.
UNIVERSAL ATTRIBUTES:

The first data in the file must be a list of attributes followed by a period. The first attribute

t. may be preceded by any number of blank lines, or no blank lines.

Legal characters: A-Z, a-z, 0-9, and . (i.e., underscore).

Attributes must begin with a letter.

Attributes can be strings of legal characters up to a maximum of 10 characters long.

e A maximum of 92 attributes can be specified in one file.

Each attribute can be followed by any number of spaces or any number of carriage returns.

List of attributes must end with a period. There can be any number of spaces, no spaces, or

a carriage return between the last attribute and the ending period.

=,
T
N ¢
.-J.'M

-

83

[\

. s . - Y TR R AN ARV I LTS A T L AT AR AT AT LT
e A A a2 T o A o g o i o T A o A A A NI N S A

L

PR

-

- -

P,

= -
- >

- e @

.

t4

i - insert text just before cursor.

o I - insert text at beginning of line.

e esc - escape out of insert mode.

e a - append text just after cursor.

e A - append text at end of line.

e arrow keys - move cursor direction of arrow.

e control H - backspace.

e :n - where n is an integer line number. This moves the cursor to line number n.

>

‘,.
e x - delete the character under the cursor.

e dd - delete the entire line which the cursor is on.

® O - open a new line under the line where the cursor is.

o O - open a new line above the line where the cursor is.

® :wq - write the updated file over the old one, and quit the editor.

e :q! - quit, but don’t save any of the changes.

Figure 14. Summary of UNIX vi Commands

Y
84
A TP AW P N O T R I AT A AT NN N s e
.n‘u'l'.'l'— AOONORT AR \'l'... Iy, 5, &.l. (A -l- p \ \' 2 .u~ Al 8 » ' A

ape, -
ey

P> ™"

‘ 1 " T o T e %

p
)
)
0

ABCDE.

A->B.
C->E.
B->->C.
A->E.
D->-3>4A.

Figure 15. Input File Example 1

DATABASE DEPENDENCIES:

The list of attributes must be followed by at least one dependency. The file may contain any
number of functional dependencies or multivalued dependencies. The dependencies must comply

with the following specifications.

e The symbol to show functional dependence is — > (i.e., dash, greater than). The symbol

must contain only one dash and one greater than.

e The symbol to show multivalued dependence is — > — >.

e Each dependency must have one or more legal attributes on the LHS and RHS, and must be

followed by a period.
o The list of dependencies may contain embedded carriage returns and spaces.

e Multivalued dependencies may include the symbol “|” to separate groups of dependencies

when appropriate on the RHS only.

¢ If all attributes in the attribute list contain only one symbol, then the attributes on the LHS
and RHS do not need to be separated by spaces. However, if some of the attributes contain

more than one legal character, each attribute must be separated by spaces or carriage returns.

85

LN L L L e Lt WY
L, 870, 4N 1 .8 X

(R OGS N |

e ol e -

e

PP
T ey -

-»
-

o~

1

VTP LU A A R R AN A LRGN, O OO LA OO L AL P O R A GO

NAME SSN ACCTNUM BALANCE .
SSN — > NAME .

SSN — > — > ACCTNUM BALANCE .
ACCTNUM - > BALANCE .

Figure 16. Input File Example 2

A.6.2.1 Create a new file. This function allows the user to create new files in the
format defined in Section A.6.2. The function first asks the user for a file name for the new file.
Then, the file is created and the user can enter data using UNIX vi commands (see Figure 14 for a
summary of basic commands). The toolbox calls the UNIX vi editor to provide the edit capability,

and therefore, all vi commands are available.

When the user has finished creating the new file, Le should end the editing session with the vi
command “:wq” to save the information. If the user types the vi command “q!" at the end of the
session, the data will not be saved. After the user is done editing a file, the toolbox will examine
the file to ensure it is in the proper format. If it is, the system will return to the “Create or Update
Database Specification File” menu. If the file is not in the proper format, the toolbox will display
the file contents and, in most cases, tell the user which line contains an error and what the error is.
The system will then inform the user that he may edit the file and try again, and will return the
user to the “Create or Update Database Specification” menu and the user can either create/edit

additional files, exit the toolbox, or return to the main menu so he can use other toolbox functions.

A.6.2.2 Update an ezisting file (save with same name). This function allows the user
to update an existing file, and save the contents under the same file name. The function first asks
for the name of the file to be updated. The system will check to make sure the file exists, and if so,
will display the file and allow the user to edit it using the full screen editor. If the file does not exist,
the system will notify the user and allow him to try again. The toolbox will examine the file to
ensure it is in the proper format as described above for the “Create New File” function. Once the

user finishes editing the file, the toolbox returns to the “Create or Update Database Specification

86

Lo ake ad

;%9

3 P ANt Y A0 2O O T T sl N ™ b M S n T e m ¥ e e e P e

File” menu and the user can either create/edit additional files, exit the toolbox, or return to the
main menu 80 he can use other toolbox functions.

Note: If during the editing session the user decides he wants to save the updated file under a new
file name, he may end the editing session with the vi command “wq newfilename”. This will store

the updated information in a file named “newfilename”, and leave the original file untouched.

A.6.2.83 Update an ezisting file (save with a different name). This function allows the
user to update an existing file, and save the updated information under a new file name. The
function first asks the user for the name of the file to be updated. Then, if the first file exists, the
function asks for the new file name. The system then makes a copy of the original file and stores it
in a file with the new name. Then the system displays the copy so the user can edit it. When the
user terminates the editing session, the updated information will be stored in a file with the new
file name. After editing is complete, the toolbox will examine the file to ensure it is in the proper
format as described above for the “Create New File” function. Once the new file is completed by
the user, the toolbox returns to the “Create or Update Database Specification File” menu and the
user can either create/edit additional files, exit the toolbox, or return to the main menu so he can

use other toolbox functions.

A.6.3 Generate Logical Structures. This function allows the user to generate logical database
designs in 3NF, 4NF, or BCNF. As soon as the “Generate Logical Structures” option is chosen on
the main menu, the toolbox will ask the user to input the name of an input file. The user must
provide the name of an input file which contains database specifications in the format described in
Section A.6.2. The system will then examine the file to ensure it is in the proper format. If the
specified file is not in the proper format, the system will display the errors and then display the
user’s options. Once the name of a properly formatted input file is given, the toolbox shows the
options on the “Generate Logical Structures” menu. The function of each of the options on this

menu are described in the following subsections. The 4NF and BCNF designs are accomplished by

87

RVAVRMY . RuWVEY

LA A A A AR AUR ATE Alh

a single algorithm which was originally developed in [17]). The algorithm has been adapted for use

in the toolbox.

A.6.8.1 Generate SNF Designs. The “Generate 3NF Designs” option generates 3NF
database schemes from the universal attributes and FDs in the specified input file. Third Normal
For-) (3NF) is a normal form in which each relation of a database conforms to the following
restrictions. First of all, each relation cannot contain nonkey attributes which are functionally
dependent on part of the primary key for the relation. In other words, each nonkey attribute of
each relation must be fully dependent on the primary key. (This requirement causes the relations
to be in 2NF). Additionally, no relation can contain a nonkey attribute which is dependent on
another nonkey attribute. This last requirement ensures that no nonkey attribute is transitively

dependent on the primary key.

If the input file contains any MVDs, they are ignored by this function since they are not

t::- considered in 3NF designs. This function displays a menu with the following options:

1. Generate a single 3NF scheme.

2. Generate alternative schemes.

3. Return to Generate Logical Structures menu.
4. Change Input File Name.

5. Exit System.

If option number 1, Generate a single 3NF scheme, is chosen, the system will display the

universal attributes, FDs, and MVDs in the current input file. If the file does not contain any FDs, ‘
the program will notify the user that the universal set of attributes is by default in 3NF. If the
file contains FDs, the toolbox generates the 3NF schemes, and stores thom in a file which has the

extension “. 1.3NF” (i. e. , single 3NF) added to the name of the current input file name. After

88

‘ % displaying the schemes on the terminal, the toolbox tells the user the name of the output file where

the schemes are stored, and then returns to the “Generate 3NF Designs” menu.

s e

If option number 2, Generate alternative schemes, is chosen, the system will display the

oy

universal attributes, FDs and MVDs as done in option 1. Again, if the file dces not contain any

-

FDs, the toolbox will notify the user that the universal set of attributes is by default in 3NF.

If the file contains FDs, the toolbox will display an enumerated list of the FDs, and let the

PR, XD

user know that the displayed order is the default order which will be used to generate the 3NF
design. The system then asks the user if he would like to change the order of the FDs, and if so, to
type the number of the FDs in the desired new order. The user can generate different 3NF schemes
I by varying the order of the FDs since the order effects which FDs are eliminated from the set by

the 3NF algorithm.

The system will allow the user to vary the order of the FDs as many times as desired, and all

el uNE, ~, <«

‘»—s designs will be stored in a file which has the extension “. alt.3NF” (i. e., alternative 3NF) added to
\ the name of the current input file name. After displaying the schemes on the terminal, the toolbox
y tells the user the name of the output file where the schemes are stored, and then returns to the

. “Generate INF Designs” menu.

K A.6.3.2 Generate BCNF Designs. The “Generate BCNF Designs” option generates
; BCNF database schemes from the universal attributes and FDs in the specified input file. Boyce/Codd
Normal Form (BCNF) is a stronger normal form than 3NF. BCNF has the same restrictions as
. named above for 3NF, however, BCNF also requires that the LHS of each nontrivial functional
- dependency be a superkey of the relation it applies to. A superkey is a set of attributes which

uniquely identifies each entity (tuple) of a relation. That is, a superkey functionally determines all

attributes in the relation.

B 89

(]
e m kR e e ma et AT ma A A A n R ey e - . -~ .
LA e N Wl e s B T R L L T Ao G TR Ay (g Ay s At Sy P W Yo Dt S SV N R T P

TR

'ﬁ:) If the input file contains any MVDs, they are ignored by this function since they are not
S

considered in BCNF designs. This function displays a menu with the following options:

. 1. Generate BCNF schemes.

" 2. Return to Generate Logical Structures menu.
0 3. Change Input File Name.

L»

[

4. Exit System.

The following definitions from [17] are necessary for understanding the output of this function.

4
Iy
. e Envelope set: set of MVDs which is logically implied by a set of FDs and MVDs.
X
1
: e Minimum cover of a set of MV Ds: a reduced set of MVDs which is equivalent to the original
)
:: set, but with no redundancies.
o«
‘O

’ o Dependency Basis of a set of attributes: the dependency basis of a set of attributes X is the
A set of sets of attributes logically implied by X with respect to a given set of FDs and MVDs.
* e M~: if Dis aset of FDs and/or MVDs, and M is the minimum cover of the envelope set of
v D, then M~ is the set of MVDs given by {X —— W|X —— W is a reduced MVD in M*}.
3 o keys: LHS(M ")
d e sp-ordering: a sequence of elements X, X;,..., X, is a sp-ordering if:

(1) X € X; implies 1 <i< j <n, and
'j (2) if D logically implies X; — X; but D does not
' logically imply Xy — Xj,
A then1<i<j<n.
X
N If option number 1, Generate BCNF schemes, is chosen, the system will display the universal
: attributes, FDs, and MVDs in the current input file. If the file does not contain any FDs, the
\
program will notify the user that the universal set of attributes is by default in BCNF. If the file

‘ 90

. N - W] - LSS S N L S - & KRR R R I it e R Y N o R
W 8,000 A% €8 ,',, l. ‘. e, (~'~f z ‘. "- .N.r' AN AV) e " '.‘ ‘.\ “.\ .‘ %) - {.‘“.I’ \ Y

HLW UV UNMLN VA WU W VWU T L AT Y T A T e ™ A BT

_.:;: contains FDs, the toolbax will display an enumerated list of the keys for this set of dependencies,
l and let the user know that the displayed order is the default order which will be used to generate
£ the BCNF qeeign. The system then asks the user if he would like to change the order of the keys,
5 and if so, to type the number of the keys in the desired new order. The user can generate different

BCNF schemes by varying the order of the keys since the order effects which FDs are eliminated

i from the set by the BCNF algorithm.

W In addition to the keys and list of BCNF schemes, this function also displays some of the
intermediate results of the BCNF algorithm. The system displays the envelope set, minimum cover,

" dependency basis, and M~

The system will allow the user to vary the order of the keys as many times as desired, and all

designs will be stored in a file which has the extension “. BCNF” added to the name of the current

h
|}
_p' input file name. After displaying the schemes on the terminal, the toolbox tells the user the name
:‘ .
:: of the output file where the schemes are stored, and then returns to the “Generate BCNF Designs”
‘I. =
: ‘.. menu.
|;' d
)
::p The other options on the “Generate BCNF Designs” menu are self explanatory.
§,
"
0::
L}
- A.6.3.3 Generate {NF Designs. Fourth Normal Form (4NF) is a normal form which
) is defined exactly like BCNF except that instead of functional dependencies, the 4NF definition
! \: uses multivalued dependencies. That is, the LHS of each nontrivial multivalued dependency must
*‘
. be a superkey of the relation it applies to.
1_' The “Generate 4NF Designs” function operates the same as the “Generate BCNF Designs”
’;. function described above. The only differences in the functions is that the output is stored in a
.|||
L file which has the extension “. 4ANF” added to the name of the current input file name. Also, this
N
::p function will work without FDs in the input file since the 4NF design algorithm can use FDs or
)
‘ MVDs separately to design schemes, or it can integrate both FDs and MVDs to design the schemes.
'y
4 If the file contains only FDs, this function will generate the same schemes as the BCNF function.
S If;p'.
:'l ~':\:.‘
I 91
4 »
l‘

" ’ AR AL P A : e e Ty Ta e M A a e CaTn T R O A Tt A R S T LN I I Sl L N
". Sl ool ld‘ J‘I o (-".l.\'f"\{.' “ < '.,' .' ,"'.' St \\ 4 iy A .Q " s \ x \ 4

p

:15

R

:;: ‘% A.6.4 Accomplish Utility Functions. This activity provides many functions which the user
i

‘.) can use to study dependency theory and relational database design. The user can select this func-
. tion from the main menu. Prior to executing any of the functions, the user must provide the name
»

E:‘ of an input file which contains database specifications in the format described in Section A.6.2.
- After the name of the input file is provided, the toolbox will examine the file to determine if it is in
‘}.: the proper format. If not, the system will notify the user of the errors. If the file is in the proper

format, the toolbox will display the following menu:

W
WY 1. Find minimal covers for a set of FDs.
N ‘
& 2. Find minimal covers for set of FDs and MVDs.
i-
j‘, 3. Membership algorithm.
.r'
p) .
&) 4. Find envelope set for set of FDs and MVDs.
.‘
c. 5. Compute attribute closure.
: 6. Find dependency basis of set of attributes.
e
¥
4 7. Generate instance of an armstrong relation.
8. Return to Main Menu.
N
’ oo
‘ 9. Change Input File Name.
A
) 10. Exit System.
P
4
X}
'3 The algorithms used to implement functions 2, 4, and 6 were originally defined in {17], and
b
i were adapted for use in the toolbox. The operation of each function is described in the subsections
» below,
>
“‘. A.6.4.1 FD Minimal Cover. A minimal cover of a set of FDs is a reduced set of FDs
l
r :: which is equivalent to the original set, but with no redundancies. The concept of minimal cover
VI 6
N X ‘n.‘f
* 92
»
'
‘&
e e e T Y e e

is central to normalization. Minimal covers are important because the cover contains all the same
“potential” information as the original set; however, since the redundancies have been removed,

the relations generated from a minimal cover should contain less redundancy.

This function first shows the following menu:

1. Generate minimal cover.
2. Return to Utility Function menu.
3. Change Input file Name.

4. Exit System.

If option number 1, Generate minimal cover, is chosen, the system will display the FDs in

the current input file. Then, the minimal cover is displayed on the terminal until the user presses

f; return. When the user presses return, the toolbox returns to the “FD Minimal Cover menu”. The

other options are self explanatory.

e RS L

e ool a'e htd a¥h atd'ala'aVlatatal £20 (v 0 8 6 00 4 00 £ 8°0 %8 Rig Ve guatatatai gl el gt el eaton VOO VRN Ll ol Akt et At

= gt S Skt

AR

0
™

1

)
0
?

0
I~

-
N

'
)

[)

1]

»

+
D
=
L

L]

L]

»

' -~

\e

o B
i
!
0

!

-
)
'

L]
)
)
]

',
.

»
L.

(]

. .‘-.r‘..\d

_.‘-

‘

Y

-

L]
‘|

4

Ta e LN N

S e w

.

A.6.4.2 Combined FD/MVD Minimal Cover. As described above for FDs, the mini-
mal cover of a set of MVDs is a reduced set of MVDs which is equivalent to the original set, but
with no redundancies. This function operates the same as the FD minimal cover function except
that it combines the FDs and the MVDs given in the input file into an equivalent set of MV Ds,

and then generates the minimal cover of the set of MVDs.

A.6.4.3 Membership Algorithm. Given an input file which contains a set of universal
attributes and a set of FDs, this function will tell the user whether or not a specified FD is in the

closure of the set of FDs. The input file must contain FDs for this function.

First, the function will display the FDs that are in the input file. Then, the toolbox will ask
the user to input an FD. The user must input the FD in the same format as the FDs shown in the

sample input files in Section A.6.2. That is, the FD must appear as follows and be followed by a

period:
A->B.

The toolbox will verify the format of the FD. If the FD is not in the proper format, the user

18 notified and asked if he wants to try again. If he does not want to try again, the toolbox returns

to the FD Minimal Cover menu.

Once the user inputs a properly formatted FL, the toolbox determines if the FD is the closure
of the set of FDs in the input file and then notifies the user of the results. The toolbox allows the

user to try as many FDs with the current input file as desired, and then returns to the FD Minimal

Cover menu.

94

LIS I LTS

A I N T I e - LIPS Y My Mg Vg B W -._v.‘.._
A S A T AR AR P G N A S A AL FOR A S

A.6.4.4 Envelope Set for set of FDs/MVDs. An envelope set is the set of MVDs which
is logically implied by a set of FDs and MVDs. The generated envelope set of MVDs can be used

to decompose relations in the context of both FDs and MVDs.

This function will generate the envelope set of MVDs for a set of FDs and MVDs in a given
input file. First, it displays the FDs and MVDs in the input file. Then, it displays the envelope

set, and subsequently returns to the Utility Function menu.

A.6.4.5 Atiribute closure. The closure of an attribute X with respect to a set of FDs
is the set of all attributes functionally determined by X. This function computes the closure of one

or more attributes and then displays the closure on the terminal.

First, the function displays the universal attributes, FDs and MVDs which are in the input
file. Then, the function asks the user to input one or more attributes. Then finally, the function

computes the closure of the attributes and displays the closure on the terminal.

The function allows the user to try as many sets of attributes with the current FDs as desired,

and then returns to the Utility Function menu.

A.6.4.6 Dependency Basis. The dependency basis of an attribute is a set of sets of
attributes which can be used to find the set of MVDs of the form X —— Y logically implied by
M. Given an input file which contains a set of universal attributes and a set of FDs and/or MV Ds,

this function will generate the dependency basis of a specified set of attributes.

This function follows the same format as the Attribute Closure function described above.

95

A.6.4{.7 Instance of Armstrong Relation. Given an input file which contains a set
of universal attributes and a set of FDs and MVDs, this function will generate an instance of an
Armstrong relation. An Armstrong relation is a relation which satisfies precisely those dependencies

in the input set, and no other ‘accidental’ dependencies.

This function requires minimal interaction with the user. It simply notifies the user that
the function has started, generates the instance of the Armstrong relation, and displays it on the
terminal. The output is stored in a file which has the extension “. arm” preceded by the input file
name. After the user has reviewed the output on the terminal, the toolbox returns to the Utility

Function menu.

S:i ﬂ%} Appendix B. SADT Diagrams
N B.1 Introduction

ot This Appendix contains the SADT diagrams which define and document the functional re-

quirements for the Dependency Theory Toolbox. In the following pages of this appendix, each
o diagram is presented, and then the pages of text which immediately follow each diagram provide
more information about the requirements conveyed in the diagram. The diagrams explain "what”
the requirements are, and the pages of text which correspond to each diagram explain the require-

& ments in more detail and explain “why” some of the requirements exist.

s My)

-
i

) 97

A TR e L e A R S R

AUTHOR: Capt Stansberry

DATE: 18Dec87

PROJECT: Dependency Theory Toolbox REV: 1.0
COMMANDS
DATABASE
CONSTRAINTS CRT INFO
DATABASE ASSIST o
ATTRIBUTES _ DATABASE
DESIGNER USER FILES
. USER FILES
o
NODE: TITLE: NUMBER:
A-0 Assist Database Designer C-1

TR EL Y 1 0 N NS AN P OV O R RN P 6,0 Vst 110 RSV M S RS AR I Gt S S ATt e Sk

98

CR AL Lol o™

ol

o
-

o

e
- e

-
o

—
. "

B.2 A-0 - Assist Database Designer

The activity, Assist Database Designer, encompasses the top level functional requirements for
the Dependency Theory Toolbox. In general, the function of the toolbox is to assist the user with
designing and studying the logical structures of relational databases. The activity allows the user to
input DATABASE CONSTRAINTS (functional dependencies and multivalued dependencies) and
DATABASE ATTRIBUTES interactively, or to specify existing USER FILES which contain the
information. The user file can be created using the toolbox, or can be generated by other design
tools in the prescribed format. The system is designed to accept existing files so that this toolbox
can be used in conjunction with other database design tools developed at AFIT. For example, if
the Entity-Relationship diagramming tool, which was developed by Mendez [22], stored the entities

and attributes which were specified in the diagram in the proper format, the data file could be

directly input into the toolbox.

The activity is controlled by COMMANDS which come from the user’s terminal. The system

communicates with the user by outputting CRT INFO on the user terminal and outputting other

information into USER FILES which are stored on a system mass storage device.

99

T U T N UL ML R AN S S T T WAy
S G N vy .:v(L-fn:!';_fL“LfLw s fala . £ AL oY, P POy ._-"3

] 'r-.\' LI ')-‘,'p""l'-,'- SRS . N S

h.,

AUTHOR: Capt Stansberry DATE: 18Dec87
PROJECT: Dependency Theory Toolbox REV: 1.0

COMMANDS
¢ Y CRT INFO
™ aY

7] /1 Vg - 01
INITIALIZE | A _USER QEIIQNJ A I
(

TOOLBOX 1
)
e —

11 CREATE OR

UPDATE
FILE

(y)

GENERATE
LOGICAL
STRUCTURES .

— |

—kkkk

()

ACCOMPLISH
UTILITY

UTILITY FUNCTIONS 4
FUNCTION RESULTS

EXIT "@
TOOLBOX
5 |

* - DATABASE CONSTRAINTS
** . DATABASE ATTRIBUTES
**¢ _ USER FILES
++ _ FUNCTION CALL

NODE: TITLE: NUMBER:
A0 Assist Database Designer C-2

N RS R Ay ST g

N

J T v gb Pn K. et a ? ‘4 a'p aih o¥ WETOCTOR T O FOUOR O R Y YRUY Y Vo .L"W‘v‘-vv,'v!vvvl."'."l"l'*

)

K

Al

*

4

\J

.' -

R N

.', '

:: B.8 A0 - Assist Database Designer

:: ABSTRACT: The activity, Assist Database Designer, provides the user with functions to

) help design and study the logical structures of relational databases. The activity is controlled by

.

:;- COMMANDS which come from the user’s terminal. The system communicates with the user by

! outputting CRT INFO on the user terminal and outputting other data into USER FILES which

K\
are stored on a system mass storage device. The activity allows the user to input DATABASE

4

:: CONSTRAINTS (functional dependencies and multivalued dependencies) and DATABASE AT-

)

TRIBUTES interactively, or to specify existing USER FILES which contain the information.

[/

) Al - INITIALIZE TOOLBOX: This activity is automatically activated when the toolbox is

]

- started. The activity identifies the system and welcomes the user, and then provides the user with

.

T a menu of options. Once the user selects an option through COMMANDS from the user terminal,

C. the activity calls the appropriate system function. This activity communicates with the user by
®

R |

& outputting CRT INFO on the user terminal.

L)

[

E‘ A2 - CREATE OR UPDATE DATABASE SPECIFICATION FILE: This activity interacts with
the user to collect the DATABASE ATTRIBUTES and DATABASE CONSTRAINTS (FDs and

A MYVDs), or gets the name of a previously defined file. The activity stores the database specifications

ol

5 in a properly formatted user file, or updates the previously defined file. The "properly formatted"”

A user file is requircd mainly to provide a standard file which can be used to pass database specifi-

L

:; cations between this toolbox and other AFIT tools (e.g., the ER diagramming tool [22]), and as a

\

N place to store database specifications until needed by the system. The database specifications are
stored in a user file on mass storage, and are available for input into the other activities shown on
the AO diagram as required.

)

3 A3 - GENERATE LOGICAL STRUCTURES: This activity generates the logical structures for

b

- |

< 101

2

N

[}

W gy X S S S S e e e g S S N S e S

L " . . . :
‘W %:3 a relational database by manipulating database attributes and constraints which are stored in a

specified USER FILE. The USER FILE must be a file which contains database specifications in

the standard format. Then, the selected option within this activity will call a routine to build the

X0

:: required data structures for the normalization process.

4
N This activity can generate logical structures in 3NF or BCNF if the database constraints

[~

o include functional dependencies (FDs), and 4NF if the constraints include a combination of both

1

:. FDs and MVDs, or only multivalued dependencies (MVDs). The activity can either generate

v alternative logical structures, or generate a single design, depending on the user’s preference. The

)

activity communicates with the user by outputting CRT INFO on the user terminal, and stores

'

" database designs in USER FILES stored on mass storage. To accomplish the design tasks. the
. activity must call utility functions and pass these functions the appropriate database constraints

Y

R and attributes. Then, the functions return the results to this activity for further processing.

4]

- A4 - ACCOMPLISH UTILITY FUNCTIONS: This activity provides many functions which can
_ G be accessed directly by the user or by the A3 activity. The user can select this activity from
s
o the main menu provided by the A1 activity, and then control it with COMMANDS input from
\

« the user terminal. The user must specify a USER FILE which contains database specifications

in the standard format so the functions can build the appropriate data structures needed for the

'_': operations. Additionally, the A3 activity must call many of the functions provided by this activity
»

:, in order to design logical structures. Once completed, the function returns the results to activity

‘]

A3 for further processing.

7
g
7 A5 - EXIT TOOLBOX: This activity notifies the user of program termination and passes control

)

:‘. back to the operating system.

1
5
|
\

<

4

'\
A% [
e’ e, 1
v

‘ 102

[\

N
[

%)

N - - e e L - o~ 2" DYy - AR 2 S T A O A A I TN N I I R AP I

AT LAl Tt e Lol o T Ty “a T e W n WA SR WMWY N L g e A ARCHROG,

MELELES

K2 A2

g L3

P o o
-

L)

)
h

¢
]
1)

¥)
¢
¢

A a

e

Y

B.4 Al -INITIALIZE TOOLBOX

ABSTRACT: This activity is automatically activated when the toolbox is started. The
activity identifies the system and welcomes the user, and then provides the user with a menu of
options. Once the user selects an option through COMMANDS from the user terminal, the activity

calls the appropriate system function. This activity communicates with the user by outputting CRT

INFO on the user terminal.

Al.l - WELCOME USER: This activity generates a display to identify the toolbox and
welcome the user. The initial display will remain on the screen until the user types a key to

continue. After the user presses a key on the user terminal, this activity calls the PRESENT

OPTIONS activity.

Al1.2 - PRESENT OPTIONS: This activity will display a menu of the options the user can

choose. The menu will contain the four main activities shown on the A0 diagram. The options will

include the following:

1. Create or Update Database Specification File
2. Generate Logical Structures
3. Accomplish Utility Functions

4. Exit Toolbox

Once the user chooses an option, this activity will call the appropriate function.

104

' Pl o Ty Ta® u®p " A%l g aatq® N AT L N A 0 AL N e A AT A L Lt N N
L l's‘l" l'. ".“ ~" f L R . L’ ~'. 3 '\\ .l . -.. N "' K . X WP, 0

£Ls

XA

E <
3

.

2B

v 4

- S

¢

¥ %

(o

W e W

AUTHOR: Capt Stansberry

DATE: 18Dec87

PROJECT: Dependency Theorv Toolbox REV: 1.0
Cl
COMMANDS
DATABASE
CONSTRAINTS CRTIEFO o .
11 CREATE NEW FILE
DATABASE OR
ATTRIBUTES
I2 UPDATE OLD FILE USER FILES _
02
USER FILES
13
NODE: TITLE: Create or Update NUMBER:
A2 Database Specification File C-4

105

UL RS T N At A A Nt

TS o A e I S Tk T T T e e L I I I I A N AT O Ay

A »;.}'..'\“'.'\. y

oAy

e o e anne
SN AT A A A g

" AW EIWYRINE YL

e T

U2 3 A0 RA RN dof fof AP Bo0 120 8.0 §a0 Bat ket e 8s (03 208 gig o h o 0 b B Al Sall Bab Sab Salke i B Ria e |

;a
3
]
_&
E
)
Dy
: B.5 A2 - Create or Update Database Specification File
'
%)
) ABSTRACT: This activity interacts with the user to collect the DATABASE ATTRIBUTES
[}
Y and DATABASE CONSTRAINTS (FDs and MVDs), or gets the name of a previously defined file.
\
e The activity stores the database specifications in a properly formatted user file, or updates the
: previously defined file. The database specifications are stored in user files on mass storage, and are
. available for input into the other activities shown on the A0 diagram as required.
*)
b A2.1 - CREATE NEW FILE OR UPDATE OLD FILE: This activity is responsible for inter-
‘: acting with the user to collect the database specifications. The user will be expected to input the
2 DATABASE ATTRIBUTES, and the FDs and MVDs (DATABASE CONSTRAINTS) required to
\
hold over the given set of attributes in a specific format. Alternatively, the user may provide the
Ln
3' - name of a previously defined USER FILE which contains the information, or which contains part
. o of the information and therefore needs to be updated. This activity then stores the properly for-
A
; matted DATABASE SPECIFICATIONS into USER FILES. The USER FILES are stored on mass
™
" storage so they are available for other system functions. The user is informed of current activities
o by CRT INFO output to the user terminal.
l
"
\
N
]
L}
L)
‘\
K
|
[y
.f"5
g
be o
106
§
¥
-
T e Lt A T A T G G L o L A A R TR L PR PR PR PR A S |

AUTHOR: Capt Stansberry DATE: 18Dec87
PROJECT: Dependency Theory Toolbox REV: 1.0

C1
t COMMANDS

PROVIDE USER FILES
INTERFACE TO
| NORMALIZATION
FUNCTIONS

UTILITY

FUNCTION RESULTS | GENERATE
z

X 3NF

DESIGNS

(y)

GENERATE

BCNF

DESIGNS e
3

(

p—a
GENERATE
4NF
DESIGNS
4

FUNCTION CALLS

@
@

* . CONSTRAINTS and ATTRIBUTES

NODE: TITLE: NUMBER:
A3 Generate Logical Structures C-5

ST 2PN T IR SR)

- "‘ l_-*‘ ‘.':-‘_--"i .)“'-"'-.‘..".‘ o "‘1"{‘-(’ -’-;I'--’-‘u..'.-.' e T N
. » 3 Oeid B . S W]

&

.'
NS

(s

a

B.6 AS- GENERATE LOGICAL STRUCTURES

ABSTRACT: This activity generates the logical structures for a relational database by ma-
nipulating database attributes and constraints which are provided in a specified USER FILE. The
USER FILE must be a file which contains database specifications in the standard format. This ac-
tivity can generate logical structures in 3NF or BCNF if the database constraints include functicnal
dependencies (FDs), and 4NF if the constraints include only multivalued dependencies (MVDs) or a
combination of both FDs and MVDs. The activity can either generate alternative logical structures,
or generate a single design, depending on the user’s preference. The activity communicates with the
user by outputting CRT INFO on the user terminal, and stores database designs in USER FILES
stored on mass storage. To accomplish the design tasks, the activity must call utility functions
and pass these functions the appropriate database constraints and attributes. Then, the functions

return the results to this activity for further processing.

A3.1 - PROVIDE USER INTERFACE TO NORMALIZATION FUNCTIONS: This activity
displays the available options and obtains the name of the USER FILE which contains the database
specifications in the standard format. The available options will include:

1. GENERATE 3NF DESIGNS
2. GENERATE BCNF DESIGNS

3. GENERATE 4NF DESIGNS

Once an option is selected, this activity calls the appropriate program function.
A3.2 - GENERATE 3NF DESIGNS: This activity generates logical structures in 3NF. The activity
can either generate alternative logical structures, or generate a single design, depending on the

user’s preference. To accomplish normalization, this activity will use the database attributes and

108

o
0

A CC B

Ya S

¥, S84

¥
LA

4

vy

“nLANH

FDs only from the database constraints provided in the USER FILE. That is, MVDs will not be
used by the 3NF design algorithm to generate logical structures. The activity will store the logical
structures in USER FILES, and will display them on the user terminal. Additionally, to accomplish
the normalizaiion process, this activity will call certain functions in the A4 activity and pass them
the pertinent CONSTRAINTS AND ATTRIBUTES required by the functions. Then, this activity
will use the UTILITY FUNCTION RESULTS to complete the normalization process.

A3.3 - GENERATE BCNF DESIGNS: This activity generates logical structures in BCNF. The
functional requirements and capabilities described above for activity A3.2 also apply to this activ-
ity.

A3.4 - GENERATE 4NF DESIGNS: This activity generates logical structures in 4NF. To accom-
plish normalization, this activity will use the database attributes, and will use MVDs only from
the database constraints provided in the database specifications in the USER FILE, or can use
FDs and MVDs together, depending on the content of the USER FILE. Other than this difference,
the functional requirements and capabilities described above for activity A3.2 also apply to this

activity.

109

|
|
1
!

t
'y
;:v
s:. RS
KLY
W
>
M AUTHOR: Capt Stansberry DATE: 18Dec87
i: PROJECT: Dependency Theory Toolbox REV: 1.0
C3 Cl FUNCTION CALLS
ol 12 | COMMANDS
> USER USER FILES
ot FILES PROVIDE N = 01
o ———"|USER INTERFACE 4 CRTINFO o
Y TO UTILITIES — -
' Q— 1 ®
W
py FIND MINIMAL UTILITY
) COVERS FOR SET FUNCTION

n OF FDs)
0

ﬁ‘ \ I

o ®

By 4 -, ——] (:)_>

tQL @— }I‘wolg ggs\;f;\{/Ds ® @ , gggég‘ém @

=
o S
b | {
b (X)—=| MEMBERSHIP (®)—={PEPENDENCY ‘
.'I @_, ALGORITHM -~ @_>BAS’S ~W

e
; 2 ¢
: (®—=| ARMSTRONG

o %: S ud (2)—=| RELATION =~

L%

.

:; * _ CONSTRAINTS and ATTRIBUTES

15

-‘_ NODE: TITLE: NUMBER:

o A4 Accomplish Utility Functions C-6
.) oﬁ\

D g

k) . i

' 110

R

B

»ow -
J » e

‘. Lot v v & T I A S S S T I B o B N
e e T R S Rt T, A A A LAt S

Yk AR A e A% ' L'a A% ANe bl Aha Ala Ate Ala Lia Ae Ale e Sfe A

5,
B S0
150

B.7 A4-ACCOMPLISH UTILITY FUNCTIONS

ABSTRACT: This activity provides many functions which can be accessed directly by the
user or by the GENERATE LOGICAL STRUCTURES (A3) activity. The user can select this
activity from the main menu provided by the INITIALIZE TOOLBOX (A1) activity, and then can
control it with COMMANDS input from the user terminal. The user must specify a USER FILE
which contains database specifications in the standard format. Then, the selected function will call
a routine to build any unique data structures required for the particular operations. Additionally,
the A3 activity must call many of the functions provided by this activity in order to design logical

structures. Once completed, the function returns the results to activity A3 for further processing.

A4.1 - PROVIDE USER INTERFACE TO UTILITIES: This activity is activated if the user
chooses to access the utility functions directly. The activity displays the available functions and

.
(;‘ obtains the name of the USER FILE which contains the database specifications in the standard

format. The available functions will include:
1. Find minimal covers for a set of functional dependencies (FDs)
2. Find minimal covers for a set of FDs and multivalued dependencies (MV Ds)
3. Membership algorithm (i.e., determine if an FD is in the closure of a set of FDs)
4. Find envelope set for a set of FDs and MVDs
5. Compute attribute closure

6. Find dependency basis of a set of attributes

7. Generate instance of an Armstrong relation

Once an option is selected, this activity calls the appropriate program function, and passes the

CONSTRAINTS AND ATTRIBUTES.
2)
R

Ls

111

LRI

. RN S PRt A mt A P e e e Ca A e T T e e AT AN AN
A N L R I I 1y g A i il R R SN T B i N i A S RN 0 Ly e TSI

o e

o
(D

b)
-

e’ s
R

p
. s
L

A [\ L S % - &

R0

'
-

o

o

- &

R

A4.2 - A4.12: Each utility function requires that the database CONSTRAINTS AND AT-
TRIBUTES be provided as input. If the function has been called by activity A4.1, then the
UTILITY FUNCTION RESULTS are passed back to that activity so they can be presented to the
user. If the function has been called by one of the normalization functions in activity A3, then the
results are passed back for further processing. The functions are controlled by function calls from

either the user interface of activity A4.1 or the normalization tools in activity A3.

112

- N - -.'_'.' -"_ '-;J-.,,\ \a\:n- 't‘. o

PRk ath att B ettt 'l ah 2t u'h o'l ot o

oy

>~

)

e

-~

s

AUTHOR: Capt Stansberry

DATE: 18Dec87

PROJECT: Dependency Theory Toolbox REV: 1.0
Cl1
USER
OPTION
(y)
NOTIFY USER
OF TERMINATION CRT INFO
AND EXIT 01
TO OPERATING
SYSTEM
NODE: TITLE: NUMBER:
A5 EXIT TOOLBOX C-7
113

-~

P A N 0 S A S

s e d

f -
ealSull R 5 o0l B 4

K A, % G, -
ongl 7
40{:

e S 2

\ \woss ey

- - -
-

shm

PN o, %

)
»
13

O

B.8 A5 - EXIT TOOLBOX

ABSTRACT: This activity notifies the user of program termination and exits to the operating

system.

A5.1 - CLOSE FILES: This activity will check to see if any files are currently open, and if so

will close them.

A5.2 - NOTIFY USER OF TERMINATION AND EXIT TO THE OPERATING SYSTEM:

This activity notifies the user that the program has terminated and returns control to the operating

system.

114

g e " v ~ W W RN L B e TRy e e e Nt a eyt
ORI Pl N e PR MG T AT AN DRGNP NN A PRGSO BT O y

!

1

[

-
CA

A

-
-
-

Wl
|]
o0

2

L4
LN

‘o

U O OO T

Appendix C. Structure Charts

The following structure charts show the top-level modules of the toolbox and how they are
interrelatd. The charts were developed based on the SADT diagrams that were defined during the

Requirements Analysis phase of the toolbox development.

The chart in Figure 17 shows the modules which are called by the main program driver. Then,
the structure charts in Figures 18-28 show the modules that are called at the next iower level, and

the information which is passed between them.

AL

-

‘f.l".f.‘ .'. . - ‘-

d- -'I. -l.(-".I &D L '*-" Ve -f R .‘*

. - i p Ay A
S S e ..) .‘\J". Ay '-

- 1 9 -
e Wt N

main

create. generate_ logical_ utility. infile_ exit
N file _structures functions parse

i Figure 17. main structure chart

..

s

e

<

M
e e e e 2 2
’

O St O 0 0 o ot o o T o b T A ot ot

[] a a0 - VU PYPUTURY 2 .. AR m* h bk Sl il tal o tal SRUs A0e A0 AFa Al ad Al Al ARICANEALARA RS A0 Ll 4 |
o M s e’ .2 i Uy -
4

.

create_file

.. - -
e

A%%h

; create_ update_ update_
B new. filel file2

file

-

-5y
"xt

%2,

edit_
file

yyparse

" Figure 18. create file structure chart

R O A
A et

%y '~‘~1~f\ n 'N(-,. Lg .’_ "'

"

.\\-'\.'\.'. .

X

Ty)

generate_logical_structures

N“f-ﬂag,

menu.choice
Third NF do.BCNF_4NF
\IiF_ﬁag
(; _ single. alt_3NF infile_ BCNF_4NF._
o 3NF _design -designs parse designs
fd list
\ptr
three NF_ yyparse BCNF_4NF._
algorithm driver

Figure 19

¥4

AN Vol

T ate e
": 'I\. y‘)-' Vi

. generate_logical_structures structure chart

118

W "‘-"';'-‘.-'.\""r'\' ._' - ._:'.'. LRI OR N

A AN AN
o (A X

utility functions

//\\\

fd_min_ fd_mvd. membership envelope

min_cover._ set

ERP]

cover.

interface

» 5.

interface

A

[ar S 4

N)
e« a'w

Y

attri_ dep_basis armstrong. infile.

closure rel parse

‘ Figure 20. utility functions structure chart

119

O . T e wr e e e L, e

A

-

L N UL AN . . ST S T

‘o -n'-"'f',r.',;“"-’ o~ A

fd_min_cover_interface

i)

)

K fsingle_ f_alt_min infile_parse
D

“. cover cover

e C‘

. fd ptr
A min cover min cover
by ptr ptr

, fd.cover yyparse

Figure 21. fd_.min_cover_interface structure chart

-
s Bs pv)

o A

..
-

b ns

N eY
! ‘-g'_-f
‘ 120
|'
K,
1%

-
L e LT

.. e
N SRR R o

- . -r,‘.'f\.-\.(._.r \ . ‘\J'\J'..J'.'.' . _;

L Gy A &

TYTYTY ¥ ¥ A

fd_mvd_min_cover_interface

fd_mvd_cover

env min \
cover

infile_parse

T~

set
ptr ptr
env set
fd ptr ptr
mvd ptr
attr ptr attr ptr
envelope mincover yyparse

Figure 22. fd_-mvd_min_cover_interface structure chart

N
N
b
b
3
p
o
e
P
o
E
Ly,
Qe
fd .
ptr min
cover
ptr
u
fd.nan_cover
'
I
3
¥
)
[}
1
)
=
\"_\';
LS
AR L LI P
.“. Sy \ J,. NS oo

121

oL,

AN '\‘_" sy ‘pf‘-‘,'u ; \’-‘. :- J.N-;\".\"')

g S e Nt T

-3.

%Y
-
v s

% aaB {ad (¥ 3 So At 1 * ., No AR a b K) A el N
membership
single\
fd
. fd_id TRUE/
fd-id list FALSE
list ptr FLAG
ptr
assign_fd_ids build. membership_
membership. algorithm
alg.ds

Figure 23. membership structure chart

envelope_set
fd ptr
env set ptr mvd ptr
univ attr ptr
envelope

Figure 24. envelope_set structure chart

122

Pty A AN L A

X
2'?‘ '-.“

e W “un
LA v

. Jn IL"I.&. 4

PR

2z

."-

2L

AR

&

attri_closure

R A

-
e s s
s

data
structs

wi]e fd

list TRUE,
ptr FALSE
FLAG

“(Q

YO

assign_fd_ids build. membership_

-

membership_ algorithm

alg_ds

»

x}%\

"‘l‘]

Figure 25. attri_closure structure chart

LA

a
-

'; ..‘x .

(it
o

oz
2

N
)-

.

A

123

=

ol bl L

¥ N

-y

| .\. o 'd‘\'i“l.;('J‘ 4 w" -f‘_'-l' 'l"\f__-'

iy dep_.basis

-attributes

-min cover ptr
\univ attrs

ptr

-fd ptr
s -mvd ptr
: -univ
” attr
~* ptr

-env set
ptr
-attr ptr

min
cover
ptr

envelope mincover dep

(";A Figure 26. dep_basis structure chart

bt 4

armstrong_rel

.
28
*
‘5
‘
X

A28

-
o
Sl

1=

‘.

arm_rel_alg

“

.‘..

Figure 27. armstrong_rel structure chart

T

A
~

e
2

Ld
Py

K ‘ 124

"

-
=

4

2
?,:'

infile_parse

¥
|3

yyparse

3 Figure 28. infile_parse structure chart

wy
)
ol

"
) 125
3

T

LRI R IR S YL R N .q..-....,
O AAR SRR RE R T SRRt P S SN, |

3

d

LAY
YA

el

2000

by,

iy

0ottt S0 A

o

{e

L
b

hY
o

A

3

>

-

Appendix D. Test Procedures and Input/Output Ezamples

This Appendix contains the test procedures needed to test the accuracy of all toolbox func-

tions. Each procedure specifies the required input and expected output for each test.

The input files which were used in the majority of the test procedures are presented below so
they can be easily referenced in each test procedure. The only additional test files were required to

test the Armstrong relation function, and therefore, they are presented in the Armstrong relation

test procedure described below in Section D.11.
Input Files:

testfilel:

ABCDEF.
A -> DF .
AC ->-> B .

DE -> F .
testfile2:

ABCD.
AB->D,.
B->C.

cC->D.
testfile3:

ABCDEFGH.
AB->C.

C->D.

126

I TR U S

A

'- "‘"""-

"“rﬂt" “-
L3

A

D->E.
DE -> FG .

FG -> R .

testfiled:

EMP_NUM SSN NAME SALARY .

SSN -> NAME SALARY EMP_NUM .

EMP_NUM -> NAME SSN SALARY .

testfile5:

boy girl bsl gsl date dance .

bsl ->=> boy .
gsl —>-> girl .
boy girl ->-> date .

boy girl ->-> dance .

testfile6:

ABCDE.
A ->-> E.
BC->>D.

B ->->E.

testfile7:

ABCD.
A->B.

B->4.

U UT U U/ MUY VY LYME N UYL T URTUT VNIV T U RCR A TR VR E Y

127

R R N R AL S N N LS A G O

I ._r CAS S
' e e .n‘LA\'

e T e

L A% A2 A0

~

e T A T TNy

DAL N

- -

) A -
e

e
é{”‘

P)

- e

-
"o &

Y e o)

the "™ e p" 0

o
L4

)

P A
'hn !’\'

y

bt gk b et B0 Sar By e ¥ 19 L0404 0 8tk aid ath atd ot QT Or PO O M L fak il

TR P A LR
RS,

o>

D.1 Generate a single SNF scheme

D.1.1 Test Case 1. Input: testfile2

Expected Output:

e L L L Tt
Single 3NF Design Output:

Minimal Cover:

B->C

C->D

3KF Schemes:

1. Key =B
Scheme = BC

2. Key=¢C
Scheme = CD

3. Key = AB
Scheme = AB

D.1.2 Test Case 2. Input: testfile3

Expected Output:

LA AT SR I 22 2 2R R 2t 22212 2222222 P22 2222t

Single 3NF Design Output:

Hinimal Cover:
C->D
D >E

D ~->F

128

Syt '-’,-' > \:_f.}'n;.-._}\‘ oy - :- e "-*'\.‘ ‘,..F'u‘*'-'ﬁ-".\' " ‘- >

RN

=

2" “26, ks abocall tply alnal tal Sal Sl il Sal bk Sal Sl Sol 'i_"l,

AN

W
o

SN N AT T
* * . o

s,

-
-

o,
T
L o-

v

xF

-
-

-
o e -
XX
Ibl“l

=
r

D->G

AB -> C

FG -> H

3KF Schemes:

1. Key = C
Scheme = CD
2. Key =D

Scheme = DEFG

3. Key = AB
Scheme = ABC
4. Key = FG

Scheme = FGH

D.1.8 Test Case 3. Input: testfile4

Expected Output:

ERPR RS ERE RSN RR NS F SRR E KRR R R EERE R AR R R ER R BE KSR RS RE S

Single 3NF Design Output:

Minimal Cover:
EMP_NUM -> SSX
SSN ~-> EMP_NUM
SSKE -> NAME

SSE -> SALARY
3BF Schemes:

1. Key = ENP_NUM

Scheme = EMP_NUM SSN

129

Wmmmmmmmm.

@ 2. Key = SSE

Scheme = EMP_NUM SSN NAME SALARY

-
D.1.4 Test Case 4. Input: testfile5
Expected Output:
The system should display the following message:
»
The input file does not contain any FDs, therefore, the universal set of attributes is by
default in BCNF.
5
;E D.2 Generate alternative SNF schemes
-
M This function uses the same 3NF algorithm as tested above in the procedure for single 3NF
designs, therefore, the output of the algorithm is already covered. Thus, the objective of this
2’
i test procedure is simply to ensure the order of the FDs can be varied by the user. Therefore.
'»
ot several order changes were tried to verify that the function accurately changed the orders, and then
4 e
7 ’. produced the correct schemes.
&
o
. D.8 Generate BCNF schemes
.
¥, D.8.1 Test Case 1. Input: testfile2
4
* -
2 Expected Output:
N
-~ L T T T T LI T TP PP TY
j Single BCNF Design Output:
e
[
"
-+ Envelope:
1)
pe . B ->-> 1A
.
. ->-
’ C ->-> AB
'
Minimum Cover:
| A
P’ .:_'.
] 130
)
D)
3
"

~

: ~p - 7, I SR R R B - RN N A o -.~".- VAW
t‘.‘a"- \l\l\‘.\| 0 ‘s. - I. f\f <. < Lals '. ’ .. " J.N'J.\"% W -(- "= .\.' n o \ ~. - -' \ \ ‘h " PP w

2 \‘l‘\‘-
¢ 2N B ->>A
“ C ->-> AB
) .
" Dependency Basis:
i
1Y B->>4a41¢0D
LN
C->>D 1| aAB
e
~ M-:
19
~
N B->>4A1|CD
C->>D | AB
" KEYs (sp-ordering)
l'
N {c,B}
Schemes:
:; 1. Key = C
'.\" Scheme = CD
¢
T
e 2. Key = B
- Scheme = BA
. 3. Key = B
[l
Scheme = BC
:'. D.3.2 Test Case 2. Input: testfilel
. Expected Output:
Q
LS 222 T2 2 222312 R RS2 TR 2222222212ttty]
v
~N Single BCNF Design Output:
¥
- Envelope:
=3
N A ->-> BCE
o AC ->-> B | E
o
Y DE ->-> ABC
AN
)
:.: 131
]
)

; . - R I R S N, R N S S S JRPLIP IO B e TR SR KL RO .-_.x.-.-_.-..-.r‘.-‘:j
R I v o S Y T TR L A S 47 SESARURA oy Ve SRR A SR % v R O M VR IS VRV Vv v o

ﬁl \}\

3 i‘ N Minimum Cover:

N i

] A ->-> BCE

i“

i AC ->-> E

" DE ->-> ABC

[

N Dependency Basis:

W

b, A =>-> DF | BCE
: AC ->-> B | E | DF
. DE ->-> F | ABC
-

oy M-:

4

Eos

A ->-> DF | BCE

AC =>-> B | B

DE ->~-> F | ABC

Tl Wy

KEYs (sp-ordering) :

Co {A,AC,DE}

. T

:: Schemes:

: 1. Key = A
Scheme = ADF

-

: 2. Key = AC

"

3N Scheme = ACB

5 3. Key = AC
Scheme = ACE

e

‘o

"

3y D.3.3 Test Case 3. Input: testfile7

Expected Output:

SRS B RS R SRR XN EXA A RAREREE LRSS LR R SRR R AR bk

S A

Single BCNF Design Output:

§ KA
g? ,‘-'.Vf‘
W e
L »
b 132
0
t
.‘
oy
L]
3 \";\‘&' T A T T ;:,f'('f: NN NG 'f.’ﬂfg’\f\fu“\f-“u"u’uiutn'\'%"'&'x'\f i)‘n?\z;d‘

---...-
:in‘l'

bl g
-

K A AN

»
PRIl o

2:-'2'

-

(o

f

Envelope:

A ->-> CD

B ->-> CD

C ->=> AB
Minimum Cover:
A ->-> CD

B ->-> CD

C ->-> AB
Dependency Basis:
A ->->B | CD
B->>4A1CD
C->->D | AB
M-:

4 ->->B | CD
B->>4]| CD
C->>D | AB

KEYs (sp-ordering)

{1,B,C}

Schemes:

1. Key = A
Scheme = AB

2. Key = C
Scheme = CD

3. Key = C
Scheme = CA

133

D.8.4 Test Case 4. Input: testfile6
Expected Output:
The system should display the following message:

The input file does not contain any FDs, therefore, the universal set of attributes is by
default in BCNF.

D.4 Generate {NF schemes

D.4.1 Test Case 1. Input: testfile2

Expected Output:

(2232224122221 1 TR 221213 23223322 2843312322222t 2td
Single 4NF Design Output:
Envelope:
) B ->> 4
.. C ~->-> AB
Minimum Cover:
B ->> A
C ->-> AB
Dependency Basis:
B->>41lCD
C->->D | AB
M-:
B->>4a|CD
C->>D 1| aB
KEYs (sp-ordering)

{c.B}

Schemes:

iigﬁ; 1. Key = C
Scheme = CD
2. Key = B
Scheme = BA
3. Key =
Scheme = BC

D.4.2 Test Case 2. Input: testfilel

Expected Output:

Ldd e dd 2 dd T N Y Y L L LTIy

Single 4NF Design Output:
Envelope:
A ->-> BCE
2

‘. AC ->-> B | E
DE ->-> ABC
Minimum Cover:
A =->-> BCE
AC ->-> E
DE ->-> ABC
Dependency Basis:
A ->-> DF | BCE
AC ->-> B | E | DF
DE ->-> F | ABC
M-:
A ->-> DF | BCE

AC ->-> B | E

135

5.5 -.'f\."_\. R

i RO TR I R Pl e -.- -
{A%Lmk J\.\A_‘(A_{A.‘GL %L PR A_"A_";'.JL P P :!_\}.'xf.('_x ..'(\ .

J‘

A

™
LA,

e A I A e o et et e

AT

NeLeR s;s::lal

b
"'
O::
KK
e
;': FENS
Py ->=> AB
::“ "';5"’ DE F | ABC
\ KEYs (sp-ordering)
:. {A,AC,DE} .
>
5y Schemes:
1. Key = A
| Scheme = ADF
2 2. Key = AC
e
Scheme = ACB
*‘
29 3. Key = AC
e
>,
: \ Scheme = ACE
W
T D.4.8 Test Case 3. Input: testfile?
:‘
P Expected Output:
N L]
'
o) "
- (; EEEERRRER AR AR R A RN NN S E A SRR A SRR RS LR R SF NSRS AR RN RS
. -
L]
:.: Single 4NF Design Output:
:E' Envelope:
A ->-> CD
>
¥ -
™ C ->-> AB
"
) Minimum Cover:
P
b A =->-> CD
-
:') B ->-> CD
)
-t
* C ->-> AB
! Dependency Basis:
s'h
‘ H
:s) A->>B| C
*
B->>41|CD
o,
IS
»' .J L
bt 136

. g B I T N VS Y
i Ly f."'._f.‘(.‘f,' l'w o .‘f*'f\f\f o n 4 . ‘.,\r&.- ‘v('_’h oS < .\.-\.‘1.. o 3 ‘--‘ -

Y
v

P

TN RN SO

C ->>D | AB

M-:

A ->>B | CD
B->>>41] CD
C->>D | AB
KEYs (sp-ordering)
{A,B,C}

Schemes:

1. Key = A

Scheme = AB

2. Key = C
Scheme = CD

3. Key = C
Scheme = CA

D. 4.4 Test Case 4. Input: testfile6

Expected Outfile:

T T P P S P T Y
Single 4NF Design Output:

Envelope:

A ->-> E

B ->-> E

BC ->-> D

Hinimum Cover:

A ->-> E

B ->-> E

137

IR T IR e S I N R R I SR AL P a2 PN o
%y E‘:\iﬂ}i‘;“;&;}& - ‘i-,.‘.A'E..}.A}.&.‘.A..\.A..'..\A n A "

F i
e

g:

X, BC ->-> D

Dependency Basis:

&

N A ->-> E | BCD
) B ->->E | ACD
D)

BC >->A|DIE

: M-:

- A ->-> E | BCD
h,

B ->-> E | ACD
N BC ->-> A | D
)
i KEYs (sp-ordering) :
‘-
{A,B,BC}
5
- Schemes:
" 1. Key = A
- c." Scheme = AE
v, 2. Key = BC
v
-, Scheme = BCA
£
3. Key = BC
. Scheme = BCD
D
)
W
)

» D.5 Find minimal covers for set of FDs

L]

. D.5.1 Test Case 1. Input: testfile2
:’ " Expected Output:
"

- Minimal Cover:

\

. B->C
<

: C->D
e

-
A
A

138

O N W PR AR] Wy Q& (W 0" (W Vo™, @ T L e
‘I MGQMM&.M;}-;M} 3}.1})1}.'\“'.4\:'41‘1,.'.)-:'.&\1. WP FEAS WA S)

N
E,‘\; D.5.2 Test Case 2. Input: testfile3
Expected Output:

Minimal Caover:

C->D
D->E
D->F
D->G
AB->C
FG->H

D.5.83 Test Case 3. Input: testfiled
Expected Output:
c... Minimal Cover:
EMP_NUM - > SSN
SSN - > EMP.NUM
SSN — > NAME

SSN — > SALARY

D.5.4 Test Case {. Input: testfile5
Expected Output:
The system should display the following message:

**ERROR. the minimal cover algorithm cannot function with out functional dependen-
Cies.**

139

LRI |
L]

TN AT VA R U A

D.6 Find minimal covers for set of FDs and MVDs

D.6.1 Test Case 1. Input: testfile2
Expected Output:

Minimal Cover:

B->C

C->D

D.6.2 Test Case 2. Input: testfile6
Expected Output:

Minimal Cover:

A->->E
B->->E
BC->->D

D.6.3 Test Case 3. Input: testfilel
Expected Output:

Minimal Cover:

A ->->BCE

ACE->~>E

DE - > - > ABC

l;"- . Laf Cad Wak lap - . Oy PR T O O DN §ocate ma aia glaate gla Ata gla gin At ia At $% h'ad'adad st . vy YOI

\
"
LX)
I..
N
M
e .
vt . .
"u':‘ % D.7 Membership algorithm
.\". Input: Specify testfile2 as the input file and then follow the following interactive procedure.
Wiy
:‘ Input “B = > D .” when the system displays the request:
t
\
b Please input an FD, and the function will determine if it is in the closure of the FDs.
fiN .
NOTE: the FD must be followed by a period.
B
‘:. Expected Output:
)
.? "
}', The system will display the message:
a» The dependency is in the closure
-')
o
'-'j- Then the system will ask:
§
Y
' . Would you like to try another FD with this same set of FDs (y/n)?
P
b
; Type “y” and the system will ask for another FD.
‘ L]
(N Input: “AB->C "
- ()
L Expected Output:
g
i~ The system will display the message:
) The dependency is in the closure
L,
Nl

When the system asks if you want to do another FD, type “y”, then:

Input: “C->B.”

T RS

Output:
g
2; The system will display the message:
. J The dependency is not in the closure
Ly
‘q To end the function, respond “n” when the system asks if you want to do another FD with

this set of dependencies.

141

-~ T f A R o S
.l N_ﬁ\il'{%)"_- &~.r .n‘\.n*..n};! e "r‘h"‘) N \J“Z._n.hf\{-' v J \'- T 4 Y

& B G U ga¥ iy e T TP P O T O T Oy O O R O O Y Y PRI U U R U O o Y AV Al ta e gl L Sl SR Lol Gl Bad At &g da dos SaTe a2 oTh o
§
¥
B
'b'
)
'
K
::‘:: -};@ D.8 Find the envelope set for a set of FDs and MVDs
i)
- D.8.1 Test Case 1. Input: testfile2
t
i. Expected Output:
AQ
:" Envelope Set:
“"‘ B-—>- > A
)
- C->->AB
1
S
» D.8.2 Test Case 2. Input: testfile6
»
: Expected Output:
-' Envelope Set:
] A->->E
gy
5 B->->E
)
W .
g == BC->->D
Qe
] -
]
MY
:' D.8.3 Test Case 3. Input: testfilel
. Expected Output:
’
:..' Envelope Set:
¢
¥ A->->BCE
ko AC->->B|E !
y !
) DE - > - > ABC |
B
L
"
)
\
N
’
X
~ ;::;"',
‘: 142
)
KN
)

L . LR TR I U N Y L
\ " P Ll T L R e R e RN VL S0 L R L S e - \-l"" R} “) L] ‘v" *.r. A . s -
O Y L L Lt et e a e WRIGALAG, el :

S »

s e eon P D e T O D T N O T e O D O T T O T O T O D DY Dy W O LV DR LW LW VS UV L U v

o
¥
.
o
ral
'l'
o "
,!.: ‘;:',r: D.9 Compute attribute closure
2% LR 2
o Input: Specify testfile? as the input file and then follow the following interactive procedure.
N‘
.p.\; Input “B” when the system displays the request:
o
, Please input one or more attributes with at least one space between each attribute:
"’.
:' Expected Output:
)
;.'0. The system will display the message:
&
l.‘ A
The closure is:
. B -~ > BCD
e,
o,
’,
- Then the system will ask:
3
L
T Would you like to try another attribute with this same set of FDs (y/n)?
.-I
\.': Type “y” and the system will ask for another set of attributes.
.
o«
o e Input: “A B”
i G
w A Expected Qutput:
L
:'.. The system will display the message:
s
‘,. The closure is:
AB - > ABCD
s
"-". When the system asks if you want to do another set of attributes, type “y”, then:
e
".‘: Input: “D”
_\ 3 Expected Output:
‘.
:: The system will display the message:
b
W The closure is:
4 D->D
‘)."
i f‘
-, To end the function, respond “n” when the system asks if you want to do another set of attributes
™
W with this set of dependencies.
W S
' e
, Ll
ol 143
Y
™

-

T R N B A A AR R CERA TR

D.10 Find dependency basis of set of atirsbutes

Input: Specify testfilel as the input file and then follow the following interactive procedure.
Input “AC” when the system displays the request:

Please input one or more attributes with at least one space between each attribute:

Expected Output:

The system will display the message:
Dependency Basis:
AC- > - > B|E|DF

Then the system will ask:

Would you like to try another attribute with this same set of FDs (y/n)?

Type “y” and the systemn will ask for another set of attributes.
Input: “A”
Expected Output:

The system will display the message:

Dependency Basis:
A-> - > DF|BCE

When the system asks if you want to do another set of attributes, type “y”, then:
Input: “F”
Expected Qutput:
The system will display the message:
Dependency Basis:
F —> - > ABCDE
To end the function, respond “n” when the system asks if you want to do another set of attributes

with this set of dependencies.

an D.11 Generate instance of an Armstrong relation
L]

D.11.1 Test Case 1. Input:

ABCD.
AB->D.
B->cC.
C->D.
LAY Expected Qutput:
%
]
¢ y Armstrong Relation for file: test_input2
L
“ A B C D
b
S
"
{: Al Bl Ci D1
' ‘.‘I
N (¢ A1 B2 C2 D2
- Al B3 C3 D1
-
.\-
< Al B4 Ct D1
E A2 B1 C1 D1
l' a,
"
N D.11.2 Test Case 2. Input:
N
s
’ ABCDEF.
g
v A -> B.
™
Ld
s A ->-> CD.
o
! A ->->EF.
".-
-, AC->D.
.t.
) E->F
-4
; E->>>ABCD.
RO
.:| ,\:\
145
!;.
oY . o RN .\,_-' oo el -'.,_‘-,_.‘ .\-._ ,R\N:.’q'\~' R KRG

s

Expected Output:

D.11.8 Test Case 3. Input:

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

A2

A3

A4

Armstrong Relation for file:

D

E

F

test _SM

B1

B1

B1

B1

B1

B1

B1

Bi

B1

B1

B1

Bi

B1

B2

Bi

c1

C1

C1

c2

c2

c2

c3

c3

c3

C4

C4

Cc4

C1

C1

C1

D1

D1

D1

D2

D2

D2

D1

D1

D1

D1

D1

D1

D2

D1

D1

E1l

E2

E3

E1l

E2

E3

El

E2

E3

E1

E2

E3

E1

Et

E1

ABCDEFGHI.

A

A

F1

F2

F1

F1

F2

Fi

Fi1

F2

F1

Fi

F2

F1

F1

F1

F1

Batiltalonai veltaf vaf al val Vap sl Vol Bg Vol @)

A ->F.

A -> G.

A=->>H1I.

BCD->E.

BCD->>AFGHI.

F -> G.

F->>>HTI.

F->>ABCDE.

G -> F.
7
G ->~> HI.
'!.l'
G->>ABCDE.
5
,-'..
"::: Expected Output:
)
Lo .
- (.‘ Armstrong Relation for file: test_2ZM
-
o A B C D E F G § 1I
[T o
' At B1 C1 D1 Ef F1 G1 H1 I
\J
3
}' A3 B1 C1 D2 E2 F1 G1 H1 Il
h“
et A4 B1 C1 D3 E1 F1 GI H1 I1
tad
: A6 B1 C2 D1 E2 F1 G1i H1 It
. .
o~ A6 Bl C3 D1 E1 F1 G1 H1 I
N
'~: A7 B2 C1 D1 E2 F1 Gl H1 I1
ar =
A8 B3 C1 D1 Ei F1 Gi Hit I
% A9 B1 C1 D1 E1 F1 G H1 It
1,
X A1 B1 C1 D1 E1 F1 Gi H1 I2
)

A3 B1 C1 D2 E2 F1 Gi H1I 1I2

s
PR

3& 147

L)
Y
..
¥,
N
ral
)2 L mlt et AT AT RTINS At At D R P N N R e R R N A SRR Oy O E L CRE R
:‘J!‘;.‘. -.' ‘-;.\'s‘-.'-.‘ "-'I' - n' ERL -_". -f"f\. ‘.\..~-_-'_-’- . q’,'r J'f" - -I- . ' e e - ',... 3% . e

Nl Bl AL A AL ASAD LS Lo B0 Lot (00 a0 $o5 Bav bas ke 8y 41 0n g o582, |

o
!"
1'.: ‘*
1'0 »)
(A
2 w A+ BL C1 D3 E1l Fi GiI H1 I2
< A5 B1 C2 D1 E2 F1 G1 E1 I2
)
, A6 B1 C3 D1 E1 F1 G1 Hi I2
k)
o
0 A7 B2 C1 D1 E2 Fi G Hi I2
L
. A8 B3 C1 DI E1 F1 G1 HiI I2
‘o
~ 49 B1 €1 DI E1 F1 G1 H1 I2
-
S A1 B1 C1 DI E1 F1 G1 H2 I
A3 B1 C1 D2 E2 F1 G1 EH2 I
.
‘i
A4 B1 C1 D3 E1 F1 GI B2 Ii
1
L
;‘ A5 B1 C2 D1 E2 F1 Gi H2 Ii
i
. A6 B1 C3 DI E1 F1 G1 H2 Ii
»,
y A7 B2 C1 DI E2 F1 GI H2 Ii
.\
" A8 B3 C1 DI Ei F1 G1 H2 I1
o ¥y
~ S A9 B1 C1 DI Ei F1 G1 H2 It
.\ had ad
N A2 B1 C1 D1 E1 F2 G2 H1 I
W
("> D.11.4 Test Case 4. Input:
'j ABCD.
4
w A->BCD.
4
B -> 4.
\ |
|
B :
P Expected Output:
"\)
N
; Armstrong Relation for file: test_arm
"
"::'E A B C D
L)
L)
u I
«0, ittt e e R
.
’ A1 B1 C1 D1
";:‘ l;t\:.‘
R
LN
an 148
9
1-'.:
<
W

(A LP AT
:..',.0 Ot

g - I T R P T L U PO YU D P VL IV BU I L .~'.-.'r..‘\....'.'~“h~‘ﬂ."“!.-'"\""I’:.
f oy Ca f 'N’ -' » \-ﬁ o f‘.. vf.‘ _-f . \---".- u" WY ‘. LA L '\ﬂ\ a8 . - \) -h

. o

4
v
h
!
)
: ~
~'
D, N A2 B1 C1 D2
A3 B1 C1 D3
s A4 B1 C1 D4
Ot
o A5 B1 C2 Dt
'
A6 B2 Ci1 D1t
D.11.5 Test Case 5. Input:
A B C.
: AB->C.
|
: C ->=> A.
. C -> B.
b
J
‘Bl
_: Expected Output:
X >
. ‘T. Armstrong Relation for file: test_comb2
P A B C
.
l g
. Al B1 Ct
l
i": Al B2 C2
§ Al B3 C4
K)
A2 B1 C3
»
Y
\ A3 B1 Ci1
9
0
A D.11.6 Test Case 6. Input:
s
AB .
A
A A > B.
: . B -> A.
o~
\ 149
D
.
e T R R e AR T TR

4t 1272t 2t aty ab, al . i e el VAt ek Tap t Oalt bk Go %2l tB Yok & \ __ v daf, 4ol lt.‘c 0 Al ek e ¢

&

Expected Output:

~

‘" Armstrong Relation for file: test_one_to_one
)

A,

X A B

L.

v A1 B1

- A2 B2

D.11.7 Test Case 7. Input:

A BCD.
A ->B
: B -~>A
: C->D
p “.
d A Expected Output:
>
-,
7,
, Armstrong Relation for file: test_1_to_1_2
9,
A B C D
[e e
(<
'€
J Al B1 C1 D1t
'
Al B1 ¢2 D2
’ At B1 C3 D1
"
"o A2 B2 C1 D1
b
v The results of the tests shown in the above test procedures are discussed in Chapter V1.
-
. e
by 'v'.:.’
D 150
»
"
o
B A O A LA TR O O A A L N L N T T o WS TRV TR N A T G et S, A G & A SR H R R S LSS R R LT

val Saf iad g

X N Y Y SO O
77

LY

<.

o)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bibliography

- A. Albano et al. Computer Aided Database Design, The DATAID Project. Elsevier Science
Publishers B. V., Amsterdam, 1985.

- C. Batini et al. Database design activities within the dataid project. Database Engineering,
7:197-202, December 1984.

. Catriel Beeri and Philip A. Bernstein. Computational problems relaicd to the design of normal
form relational schemas. ACM Transactions on Database Sysiems, 4:30-59, March 1979,

. Catriel Beeri and Michael Kifer. An integrated approach to logical design of relational database
schemes. ACM Transactions on Database Systems, 11:134-158, June 1986.

. P. A. Bernstein. Synthesizing third-normal-form relations from functional dependencies. ACM
Transactions on Database Systems, 1:277-298, December 1976.

- Anders Bjornerstedt and Christer Hulten. Redl: a database design tool for the relational
model of data. Database Engineering, 7:215-220, December 1984.

. Michael L. Brodie. Automating Database Design and Development: A SIGMOD 87 Tutorial.
Technical Report, Computer Corporation of America, Four Cambridge Center, Cambridge,
MA 02142, May 1987.

- S. Ceri and G. Gottlob. Normalization of relations and prolog. Communications of the ACM,
29:524-546, June 1986.

. Richard E. Cobb et al. The database designer’s workbench. Information Sciences, 32:33-45,
February 1984.

Robert M. Curtice. An automated logical data base design and structured analysis tool.
Database Engineering, 7:221-226, December 1984.

Ronald Fagin. Armstrong databases. In 7th IBM Symposium on Mathematical Foundations
of Computer Science, pages 1-19, Kanagwa, Japan, 24-26 May 1982.

Ronald Fagin and Moshe Y. Vardi. The theory of data dependencies - a survey. Proceedings
of Symposia in Applied Mathematics, 34:19-71, 1986.

I. T. Hawryszkiewycz. Database Analysis and Design. Science Research Associates, Chicago,
1984.

Marian Herman. A database design methodology for an integrated database environment.
Data Base, 15:20-27, Fall 1983.

2Lt Edward R. Jankus. Development of Computer Aided Database Design and Maintenance
Tools. Master’s thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1984.

Henry F. Korth and Abraham Silberschatz. Database Systems Concepts. McGraw-Hill, New
York, 1986.

Mei Li. A Nested Relational Database Design Tool Master’s thesis, Department of Computer
Engineering and Science, Case Western Reserve University, Cleveland OH, May 1986.

Mary E. S. Loomis. The Database Book. Macmili. Publishing Company, New York, 1987.

Capt Thomas C. Mallary. Design of the Human-Coi. ‘er Interface for a Computer Aided
Design Tool for the Normahzation of Relations. Master s ... sis, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1985.

Michael A. Melkanoff. July 1987. In a July 1987 telephone conversation with Capt Stansberry,
Dr. Melkanoff, at UCLA, indicated that the Armstr .ig relation tool is no longer available.

151

R ath oW ks il aBh gud o b AR riar e b

PO W O O R IO A A RN UL VT RU R UR U R UK U U T TR R I TR AR P PF A I TR TH RN TR TR I TR 5F P R T TN AU TWT 3 N,

SO0,

i:‘g;‘) 21. Michel A. Melkanoff and Carlo Zaniolo. Decomposition of relations and synthesis of entity-
relationship diagrams. In Peter P. Chen, editor, Entity-Relationship Approach io Systems
Analysis and Design, pages 277-294, North-Holland Publishing Company, New York, Decem-
ber 1979.

22. Capt Ruben Mendez. 4 Computer Aided Tool for Entity-Relationship Database Design. Mas-
ter’s thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1986.

23. Nancy E. Miller. File Structures Using Pascal. Benjamin/Cummings Publishing Company,
Inc., Menlo Park, CA, 1987,

24. David Reiner et al. The database design and evaluation workbench (ddew) project at cca.
Database Engineering, 7:191-196, December 1984.

25. Mark A. Roth. Theory of Non-First Normal Form Relational Databases. PhD thesis, The
University of Texas at Austin, Austin, Texas, May 1986.

26. A. M. Silvaand M. A. Melkanoff. Advances in Database Theory. Volume 1, Plenum Publishing,
New York, 1981.

27. Capt Charles T. Travis. Interactive Automated System for Normalization of Relations. Mas-
ter’s thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, March 1983.

28. D. M. Tsou and P. C. Fischer. Decomposition of a relation scheme into boyce-codd normal
form. ACM-SIGACT, 14:23-29, Summer 1982,

29. Jeffrey D. Ullman. Principles of Database Systems. Computer Science Press, Rockville, Mary-
land, second edition edition, 1981.

ia 30. Eric G. Vesely. The Practitioner's Blueprint for Logical and Physical Database Design. Pren-
- tice Hall, Englewood Cliffs, New Jersey, 1986.

31. S. Bing Yao et al. Principles of Database Design. Volume 1, Prentice-Hall, Englewood Cliffs,
New Jersey, 1985.

32. Li-Yan Yuan and Z. Meral Ozsoyoglu. Logical design of relational database schemes. In Pro-
ceedings of the Sizth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 38-47, Association for Computing Machinery, March 23-25 1987.

43. Li-Yan Yuan and Z. Meral Ozsoyoglu. Unifying functional and multivalued dependencies for
relational database design. In Proceedings of the 5th ACM PODS, pages 183-190, March 1986.

34. Carlo Zaniolo and Michel A. Melkanoff. On the design of relational database schemata. ACM
Transactions on Database Systems, 6:1-47, March 1981.

152

x
I W.: Jis S B WWw W Fl T NWIEWE L AT V)

Vita

Captain Charles W. Stansberry, Jr. was born on 23 August 1957 in Morgantown, West
Virginia. He graduated from Beall High School in Frostburg, Maryland, in 1975 and attended the
University of Maryland, from which he received the degree of Bachelor of Science in Biological
Science in May 1980. Upon graduation, he received a commission in the USAF through the Officer
Training School program. He completed the Communications Electronics Maintenance Officer
technical training course at Keesler AFB, MS in July 1981, and completed the Communications
Computer Programming technical training course in November 1981, also at Keesler AFB. He then
served as » Computer Programmer/Analyst for the Real-time AUTODIN Interface and Distribution
System (RAIDS) at the Air Force Communications Computer Programming Center (AFCCPC) at
Tinker AFB, OK. Then, in May 1983 he became the Chief, DCT 9000 Programming Branch, also at
AFCCPC (now named CCSO). In May 1984, he received the degree of Bachelor of Science in Data
Processing from Central State University, Edmond, OK. His next assignment, in November 1984,
was at Headquarters Space Command, Colorado Springs, CO, where he worked in the System
Integration Office (SIO) as a Missile Warning System Communication Integration Officer until

entering the School of Engineering, Air Force Institute of Technology, in June 1986.

Permanent address: 3658 Southbrook Drive
Beavercreek, Ohio 45430

\ B
SECURITY CLASSIFICATION OF THIS PAGE

U W P

Py . F e

ey v e e

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
hpa REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
RApprovecd for public releese:;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribtution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
FFIT GCS /G BTN-26
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. } (If applicable)
Scheol of Frgineering MPIT /NG
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Pir Force Institute of Technology
Wright-Pattersan AFB (F 45433-6583
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.
11. TITLE (Include Security Classification)
See Rax 19
.77 PERSONAL AUTHOR(S)
/ (harles . Stanskerry, B.S., Cept, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
MS Thesis FROM 10 1987 Tecember 166
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP CCMPUTER AIDED DESTCN
05 02
12 05
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Title: TwVEICPMEMT (W 2 TWDENLDFNCY THFORY TOCIROYX W(R T2ATARASE TFSICN
Thesis 2c¢visor: Mark 7. Roth, Ceptain, USZF o,
éa"“‘ “>’J "V - 3\% k7
i ooy =) Tavelcpment
’ Teling uT ("U'
" f". - Wx uH Fulteiscl Ix b OH ‘N“"
. / L] /~/‘, J *
Pt . -
°'~.'J_f DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
" I UNCLASSIFIED/UNLIMITED 0 SAME AS RPT [] DTIC USERS INCTASSTFTED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) | 22¢ OFFICE SYMBOL
Mark A, Rcth, Captain, US/F (513) 255-3576 ARTT NG
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

0
-

- -
v P

LR B

a

in

UNCT ASSIFTFD

N \-'-.)_*.',\...\ "_,:\

< e N
\?\ '\. T _,\..\. s N

N, ¥

Y

4
04
N\
h Ty
DA,
Much of the current dependency theory used to design and study relational databases exists ¢
in the form of published algorithms and theorems. However, hand simulating these algorithins
can be a tedious and error prone chore. Therefore, the purpose of this thesis investigation was 3
to design and implement a computer tool (that is, a “toolbox”) which contains various relational)
database design algorithms and functions to help solve the problems created by hand simulating ‘;
the algorithms. .
’
This thesis includes a review of the activities typically done to design a relational database. 2
and surveys the computer tools which are available, or are being developed, to assist databasc -
designers with the logical design of relational databases. The survey of computer tools indicated :
that although many researchers have developed computer tools to assist with relational database .
design, there are still many algorithms and functions which need to be incorporated into automated)
design tools. ~. .
The toolbbx implements algorithms to accomplish the following functions: 3NF decoipo-]
sition, 4NF deqomposmon BCNF decomposition, envelope set, FD/MVD mininal cover, depen- p
dency basis, minimal cover, membership algorithm, attribute closure Armstrong relation instance, :"_
and support for generation of alternative logical designs. A 51mple menu-driven interface was -
created to access the toolbox functions. A
x>The toolbox is intended for use in an academic environment as a teaching aid and research]
tool rather than for practical application to database design problems. However, the tool could be
used to design small relational databases which have a limited number of attributes. An evaluation
of the toolbox done during the acceptance testing phase of development indicates that the tool can N
effectively serve in all of these capacities. Y
SR
" i ».
1: :
A
3
.
»
R
h)
\
b
]
4
) r
‘.'_-.’ ?
p
i ‘

o . P IO A N Wy TR T
.w ﬁx&\'ﬁ.&,\c-:‘-l f'&ﬂ " . ,1-\ .(\-r_-r-*

- G Sa

A ap
- -

f

ot

P

.'.,"...‘ .‘. LA VB CE RS R B G GA LA] LS L RS S
RN l'-\s’ KW !-‘.-‘Q.- 1 i) N ‘! ~Md‘:&£%

